Женский портал. Вязание, беременность, витамины, макияж
Поиск по сайту

Как узнать вероятность события. Классическая формула вычисления вероятности

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    Для вычисления вероятности Р А события А необходимо построить математическую модель изучаемого объекта, которая содержит событие А. Основой модели является вероятностное пространство (,?,Р), где - пространство элементарных событий, ? - класс событий с введенными над ними операциями композиции,

    Вероятность любого события А, имеющего смысл в и входящего в класс событий? 25. Если, например,

    то из аксиомы 3, вероятностей, следует, что

    Таким образом, вычисление вероятности события А, сведено к вычислению вероятностей элементарных событий, его составляющих, а так как они являются «базовыми», то методы их вычисления не обязаны зависить от аксиоматики теории вероятностей.

    Здесь рассмотрены три подхода к вычислению вероятностей элементарных событий:

    классический;

    геометрический;

    статистический или частотный.

    Классический метод вычисления вероятностей

    Из аксиоматического определения вероятности следует, что вероятность существует для любого события А, но как ее вычислить, об этом ничего не говорится, хотя известно, что для каждого элементарного события i существует вероятность рi, такая, что сумма вероятностей всех элементарных событий пространства равна единице, то есть

    На использовании этого факта основан классический метод вычисления вероятностей случайных событий, который в силу своей специфичности, дает способ нахождения вероятностей этих событий непосредственно из аксиом.

    Пусть дано фиксированное вероятностное пространство (,?,Р), в котором:

    • а) состоит из конечного числа n элементарных событий,
    • б) каждому элементарному событию i поставлена в соответствие вероятность

    Рассмотрим событие А, которое состоит из m элементарных событий:

    тогда из аксиомы 3 вероятностей, в силу несовместности элементарных событий, следует, что

    Тем самым имеем формулу

    которую можно интерпретировать следующим образом: вероятность событию А произойти равна отношению числа элементарных событий, благоприятствующих появлению событию А, к числу всех элементарных событий из.

    В этом суть классического метода вычисления вероятностей событий.

    Замечание. Приписав одинаковую вероятность каждому из элементарных событий пространства, мы, с одной стороны, имея вероятностное пространство и опираясь на аксиомы теории вероятностей, получили правило вычисления вероятностей любых случайных событий из пространства по формуле (2), с другой стороны, это дает нам основание считать все элементарные события равновозможными и вычисление вероятностей любых случайных событий из свести к «урновой» схеме независимо от аксиом.

    Из формулы (2) следует, что вероятность события А зависит только от числа элементарных событий, из которых оно состоит и не зависит от их конкретного содержания. Таким образом, чтобы воспользоваться формулой (2), необходимо найти число точек пространства и число точек, из которых состоит событие А, но тогда это уже задача комбинаторного анализа.

    Рассмотрим несколько примеров.

    Пример 8. В урне из n шаров - k красных и (n - k) черных. Наудачу извлекаем без возвращения r шаров. Какова вероятность того, что в выборке из r шаров s шаров - красных?

    Решение. Пусть событие {А} {в выборке из r шаров s - красных}. Искомая вероятность находится по классической схеме, формула (2):

    где - число возможных выборок объема r, которые различаются хотя бы одним номером шара, а m - число выборок объема r, в которых s шаров красных. Для, очевидно, число возможных вариантов выборки равно, а m, как следует из примера 7, равно

    Таким образом, искомая вероятность равна

    Пусть дан набор попарно несовместных событий As,

    образующих полную группу, тогда

    В этом случае говорят, что имеем распределение вероятностей событий As.

    Распределения вероятностей является одним из фундаментальных понятий современной теории вероятностей и составляет основу аксиомами Колмагорова.

    Определение. Распределение вероятностей

    определяется гипергеометрическое распределение.

    Боровков А.А. в своей книге на примере формулы (3) поясняет природу задач теории вероятностей и математической статистики следующим образом: зная состав генеральной совокупности, мы с помощью гипергеометрического распределения можем выяснить, каким может быть состав выборки - это типичная задача теории вероятностей (прямая задача). В естественных науках решают обратную задачу: по составу выборок, определяют природу генеральных совокупностей - это обратная задача, и она, образно говоря, составляет содержание математической статистики.

    Обобщением биномиальных коэффициентов (сочетаний) являются полиномиальные коэффициенты, которые своим названием обязаны разложению полинома вида

    по степеням слагаемых.

    Полиномиальные коэффициенты (4) часто применяются при решении комбинаторных задач.

    Теорема. Пусть имеется k различных ящиков, по которым раскладываются пронумерованные шары. Тогда число размещений шаров по ящикам так, чтобы в ящике с номером r находилось ri шаров,

    определяется полиномиальными коэффициентами (4).

    Доказательство. Поскольку порядок расположения ящиков важен, а шаров в ящиках - не важен, то для подсчета размещений шаров в любом ящике можно воспользоваться сочетаниями.

    В первом ящике r1 шаров из n можно выбрать способами, во втором ящике r2 шаров, из оставшихся (n - r1) можно выбрать способами и так далее, в (k - 1) ящик rk-1 шаров выбираем

    способами; в ящик k - оставшиеся

    шаров попадают автоматически, одним способом.

    Таким образом, всего размещений будет

    Пример. По n ящикам случайно распределяются n шаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:

    • а) все ящики не пустые = А0;
    • б) один ящик пуст = А1;
    • в) два ящика пустых = А2;
    • г) три ящика пустых = А3;
    • д) (n-1) - ящик пуст = А4.

    Решить задачу для случая n = 5.

    Решение. Из условия следует, что распределение шаров по ящикам есть простой случайный выбор, следовательно, всех вариантов nn.

    Эта последовательность означает, что в первом, втором и третьем ящиках по три шара, в четвертом и пятом по два шара, в остальных (n - 5) ящиках по одному шару. Всего таких размещений шаров по ящикам будет

    Так как шары на самом деле различимы, то на каждую такую комбинацию будем иметь

    размещений шаров. Таким образом, всего вариантов будет

    Переходим к решению по пунктам примера:

    а) так как в каждом ящике находится по одному шару, то имеем последовательность 111…11, для которой число размещений равно n!/ n! = 1. Если шары различимы, то имеем n!/ 1! размещений, следовательно, всего вариантов m = 1n!= n!, отсюда

    б) если один ящик пуст, то какой-то ящик содержит два шара, тогда имеем последовательность 211…10, для которой число размещений равно n! (n-2)!. Так как шары различимы, то для каждой такой комбинации имеем n!/ 2! размещений. Всего вариантов

    в) если два ящика пусты, то имеем две последовательности: 311…100 и 221…100. Для первой число размещений равно

    n!/ (2! (n - 3)!).

    На каждую такую комбинацию имеем n!/ 3! размещений шаров. Итак, для первой последовательности, число вариантов равно

    Для второй последовательности всего вариантов будет

    Окончательно имеем

    г) для трех пустых ящиков будет три последовательности: 411…1000, либо 3211…1000, либо 22211…1000.

    Для первой последовательности имеем

    Для второй последовательности

    Для третьей последовательности получаем

    Всего вариантов

    m = k1 + k2 + k3,

    Искомая вероятность равна

    д) если (n -1) ящик пуст, то все шары должны находиться в одном из ящиков. Очевидно, что число комбинаций равно

    Соответствующая этому событию вероятность равна

    При n = 5, имеем

    Заметим, что при n = 5 события Аi должны образовывать полную группу, что соответствует действительности. В самом деле

    Профессиональный беттер должен хорошо ориентироваться в коэффициентах, быстро и правильно оценивать вероятность события по коэффициенту и при необходимости уметь перевести коэффициенты из одного формата в другой . В данном мануале мы расскажем о том, какие бывают виды коэффициентов, а так же на примерах разберём, как можно высчитывать вероятность по известному коэффициенту и наоборот.

    Какие бывают типы коэффициентов?

    Существует три основных вида коэффициентов, которые предлагают игрокам букмекеры: десятичные коэффициенты , дробные коэффициенты (английские) и американские коэффициенты . Наиболее распространённые коэффициенты в Европе - десятичные. В Северной Америке популярны американские коэффициенты. Дробные коэффициенты - наиболее традиционный вид, они сразу же отражают информацию о том сколько нужно поставить, чтобы получить определённую сумму.

    Десятичные коэффициенты

    Десятичные или еще их называют европейские коэффициенты - это привычный формат числа, представленный десятичной дробью с точностью до сотых, а иногда даже до тысячных. Пример десятичного коэффициента - 1.91. Рассчитать прибыль в случае с десятичными коэффициентами очень просто, достаточно лишь умножить сумму вашей ставки на этот коэффициент. Например, в матче "Манчестер Юнайтед" - "Арсенал" победа "МЮ" выставлена с коэффициентом - 2.05, ничья оценена коэффициентом - 3.9, а победа "Арсенала" равняется - 2.95. Предположим, что мы уверены в победе "Юнайтед" и ставим на них 1000 долларов. Тогда наш возможный доход рассчитывается следующим образом:

    2.05 * $1000 = $2050;

    Правда ведь ничего сложного?! Точно так же рассчитывается возможный доход при ставке на ничью и победу "Арсенала".

    Ничья: 3.9 * $1000 = $3900;
    Победа "Арсенала": 2.95 * $1000 = $2950;

    Как рассчитать вероятность события по десятичным коэффициентам?

    Представим теперь что нам нужно определить вероятность события по десятичным коэффициентам, которые выставил букмекер. Делается это так же очень просто. Для этого мы единицу делим на этот коэффициент.

    Возьмем уже имеющиеся данные и посчитаем вероятность каждого события:

    Победа "Манчестер Юнайтед": 1 / 2.05 = 0,487 = 48,7%;
    Ничья: 1 / 3.9 = 0,256 = 25,6%;
    Победа "Арсенала": 1 / 2.95 = 0,338 = 33,8%;

    Дробные коэффициенты (Английские)

    Как понятно из названия дробный коэффициент представлен обыкновенной дробью. Пример английского коэффициента - 5/2. В числителе дроби находиться число, являющееся потенциальной суммой чистого выигрыша, а в знаменателе расположено число обозначающее сумму которую нужно поставить, чтобы этот выигрыш получить. Проще говоря, мы должны поставить $2 доллара, чтобы выиграть $5. Коэффициент 3/2 означает что для того чтобы получить $3 чистого выигрыша нам придётся сделать ставку в размере $2.

    Как рассчитать вероятность события по дробным коэффициентам?

    Вероятность события по дробным коэффициентам рассчитать так же не сложно, нужно всего на всего разделить знаменатель на сумму числителя и знаменателя.

    Для дроби 5/2 рассчитаем вероятность: 2 / (5+2) = 2 / 7 = 0,28 = 28%;
    Для дроби 3/2 рассчитаем вероятность:

    Американские коэффициенты

    Американские коэффициенты в Европе непопулярны, зато в Северной Америке очень даже. Пожалуй, данный вид коэффициентов самый сложный, но это только на первый взгляд. На самом деле и в этом типе коэффициентов ничего сложного нет. Сейчас во всем разберёмся по порядку.

    Главной особенностью американских коэффициентов является то, что они могут быть как положительными , так и отрицательными . Пример американских коэффициентов - (+150), (-120). Американский коэффициент (+150) означает, что для того чтобы заработать $150 нам нужно поставить $100. Иными словами положительный американский коэффициент отражает потенциальный чистый заработок при ставке в $100. Отрицательный же американский коэффициент отражает сумму ставки, которую необходимо сделать для того чтобы получить чистый выигрыш в $100. Например коэффициент (- 120) нам говорит о том, что поставив $120 мы выиграем $100.

    Как рассчитать вероятность события по американским коэффициентам?

    Вероятность события по американскому коэффициенту считается по следующим формулам:

    (-(M)) / ((-(M)) + 100) , где M - отрицательный американский коэффициент;
    100 / (P + 100) , где P - положительный американский коэффициент;

    Например, мы имеем коэффициент (-120), тогда вероятность рассчитывается так:

    (-(M)) / ((-(M)) + 100); подставляем вместо "M" значение (-120);
    (-(-120)) / ((-(-120)) + 100 = 120 / (120 + 100) = 120 / 220 = 0,545 = 54,5%;

    Таким образом, вероятность события с американским коэффициентом (-120) равна 54,5%.

    Например, мы имеем коэффициент (+150), тогда вероятность рассчитывается так:

    100 / (P + 100); подставляем вместо "P" значение (+150);
    100 / (150 + 100) = 100 / 250 = 0,4 = 40%;

    Таким образом, вероятность события с американским коэффициентом (+150) равна 40%.

    Как зная процент вероятности перевести его в десятичный коэффициент?

    Для того чтобы рассчитать десятичный коэффициент по известному проценту вероятности нужно 100 разделить на вероятность события в процентах. Например, вероятность события составляет 55%, тогда десятичный коэффициент этой вероятности будет равен 1,81.

    100 / 55% = 1,81

    Как зная процент вероятности перевести его в дробный коэффициент?

    Для того чтобы рассчитать дробный коэффициент по известному проценту вероятности нужно от деления 100 на вероятность события в процентах отнять единицу. Например, имеем процент вероятности 40%, тогда дробный коэффициент этой вероятности будет равен 3/2.

    (100 / 40%) - 1 = 2,5 - 1 = 1,5;
    Дробный коэффициент равен 1,5/1 или 3/2.

    Как зная процент вероятности перевести его в американский коэффициент?

    Если вероятность события больше 50%, то расчёт производится по формуле:

    - ((V) / (100 - V)) * 100, где V - вероятность;

    Например, имеем вероятность события 80%, тогда американский коэффициент этой вероятности будет равен (-400).

    - (80 / (100 - 80)) * 100 = - (80 / 20) * 100 = - 4 * 100 = (-400);

    В случае если вероятность события меньше 50%, то расчёт производиться по формуле:

    ((100 - V) / V) * 100 , где V - вероятность;

    Например, имеем процент вероятности события 20%, тогда американский коэффициент этой вероятности будет равен (+400).

    ((100 - 20) / 20) * 100 = (80 / 20) * 100 = 4 * 100 = 400;

    Как перевести коэффициент в другой формат?

    Бывают случаи, когда необходимо перевести коэффициенты из одного формата в другой. Например, у нас есть дробный коэффициент 3/2 и нам нужно перевести его в десятичный. Для перевода дробного коэффициента в десятичный мы сначала определяем вероятность события с дробным коэффициентом, а затем эту вероятность переводим в десятичный коэффициент.

    Вероятность события с дробным коэффициентом 3/2 равна 40%.

    2 / (3+2) = 2 / 5 = 0,4 = 40%;

    Теперь переведём вероятность события в десятичный коэффициент, для этого 100 делим на вероятность события в процентах:

    100 / 40% = 2.5;

    Таким образом, дробный коэффициент 3/2 равен десятичному коэффициенту 2.5. Аналогичным образом переводятся, например, американские коэффициенты в дробные, десятичные в американские и т.д. Самое сложное во всём этом лишь расчёты.

    Наш ответ

    Выбор правильной ставки зависит не только от интуиции, спортивных знаний, букмекерских коэффициентов, но и от коэффициента вероятности события. Возможность рассчитать подобный показатель в беттинге является залогом успеха в прогнозировании предстоящего события, на который предполагается осуществление ставки.
    В букмекерских конторах существует три вида коэффициентов (подробней в статье ), от разновидности которых зависит, как рассчитать вероятность события игроку.

    Десятичные коэффициенты

    Расчет вероятности события в таком случае происходит по формуле: 1/коэф.соб. = в.и, где коэф.соб. – коэффициент события, а в.и – вероятность исхода. Например, берем коэффициент события 1,80 при ставке в один доллар, совершая математическое действие по формуле, игрок получает, что вероятность исхода события по версии букмекера 0,55 процента.

    Дробные коэффициенты

    При использовании дробных коэффициентов формула расчета вероятности будет другая. Так при коэффициенте 7/2, где первая цифра означает возможный размер чистой прибыли, а вторая размер необходимой ставки, для получения этой прибыли, уравнение будет выглядеть следующим образом: зн.коэф/ на сумму зн.коэф и чс.коэф = в.и. Здесь зн.коэф – знаменатель коэффициента, чс.коэф – числитель коэффициента, в.и – вероятность исхода. Таким образом, для дробного коэффициента 7/2 уравнение выглядит как 2 / (7+2) = 2 / 9 = 0.22, следовательно, 0,22 процента вероятность исхода события по версии букмекерской конторы.

    Американские коэффициенты

    Американские коэффициенты мало популярны у игроков и, как правило, используются исключительно в США, обладая сложной и запутанной структурой. Для ответа на вопрос: «Как посчитать вероятность события таким способом?», нужно знать, что подобные коэффициенты могут быть отрицательными и положительными.

    Коэффициент со знаком «-», например -150, показывает, что игроку для получения чистой прибыли в 100 долларов необходимо совершить ставку в 150 долларов. Вероятность события рассчитывается исходя из формулы, где нужно разделить отрицательный коэффициент на сумму отрицательного коэффициента и 100. Выглядит это на примере ставки -150, так (-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0.6, где 0,6 умножается на 100 и исход вероятности события составляет 60 процентов. Эта же формула подходит и для положительных американских коэффициентов.