Женский портал. Вязание, беременность, витамины, макияж
Поиск по сайту

Что такое электрический ток и каковы условия его существования. Условия необходимые для существования электрического тока направление электрического Для возникновения существования электрического тока необходимо

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.


Прохождение тока по проводнику сопровождается следующими его действиями:

* магнитным (наблюдается во всех проводниках)
* тепловым (наблюдается во всех проводниках, кроме сверхпроводников)
* химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

* наличие в среде свободных электрических зарядов
* создание в среде электрического поля.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,
Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.
Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.
основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = Dq/Dt .

Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.
Для переменного тока:
I = lim Dq/Dt ,
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.
2. Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S .

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
e = Аст./q .

4. Сопротивление проводника - R, единица измерения - 1 Ом.
Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что
R = r*l/S ,

где
l - длина проводника,
S - площадь поперечного сечения,
r - коэффициент пропорциональности, названный удельным сопротивлением материала.
Эта формула хорошо подтверждается на опыте.
Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что
r = r0(1 + a t) ,
R = R0(1 + a t) .

Коэффициент a называется температурным коэффициентом сопротивления:
a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.
Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s
s = 1/r .

5. Напряжение - U , единица измерения - 1 В.
Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .

Так как Аст./q = e, а Аэл./q = f1-f2, то
U = e + (f1 - f2) .

Для возникновения и существования постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряженных частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах, то их перемещение не приведет к появлению электрического тока.

Но наличие свободных зарядов еще недостаточно для возникновения тока. Для создания и поддержания упорядоченного движения заряженных частиц необходима, во-вторых, снла, действующая на них в определенном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротивления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молекулами электролитов.

На заряженные частицы, как мы знаем, действуег электрическое поле с силой Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между концами проводника, в соответствии с формулой (8.28), существует разность потенциалов. Когда эта разность потенциалов не меняется во времени, то в проводнике устанавливается постоянный ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального - на другом. Это уменьшение потенциала можно обнаружить на простом опыте.

В качестве проводника возьмем не очень сухую деревянную палку и подвесим ее горизонтально. (Такая палка, хотя и плохо, но все же проводит ток.) Источником напряжения пусть будет электростатическая машина. Для регистрации потенциала различных участков проводника относительно земли можно

использовать листочки металлической фольги, прикрепленные к палке. Один полюс машины соединим с землей, а второй - с одним концом проводника (палки). Цепь окажется незамкнутой. При вращении рукоятки машины мы обнаружим, что все листочки отклоняются на один и тот же угол (рис. 146). Значит, потенциал всех точек проводника относительно земли одинаков. Так и должно быть при равновесии зарядов на проводнике. Если теперь другой конец палки заземлить, то при вращении рукоятки машины картина изменится. (Так как земля - проводник, то заземление проводника делает цепь замкнутой.) У заземленного конца листочки вообще не разойдутся: потенциал этого конца проводника практически равен потенциалу земли (падение потенциала в металлической проволоке мало). Максимальный угол расхождения листочков будет у конца проводника, присоединенного к машине (рис. 147). Уменьшение угла расхождения листочков по мере удаления от машины свидетельствует о падении потенциала вдоль проводника.



Сторонние силы. Электродвижущая сила и напряжение.

Сторонние силы – это такие силы, которые отличаются по природе от сил электростатического поля.

Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д.

ЭДС - физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
ε = А ст./q Единица измерения - 1 В (Вольт)

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.
U = (A ст.+ А эл.)/q Единица измерения - 1 В.

Электрическая цепь. Однородный и неоднородный участок цепи.

Однородные и неоднородные участки цепи

Однородный участок цепи – участок цепи, на котором не действуют никакие сторонние силы(нет ист.тока)

Неоднородный участок цепи – участок цепи, на котором есть источник тока.

Электри́ческая цепь

Электрическая цепь. Внешний и внутренний участок цепи, падение напряжения.

Электри́ческая цепь - совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитных процессов.

Электрическая цепь может быть разделена на два участка: внешний и внутренний.

Внешний участок, или, как говорят, внешняя цепь, состоит из одного или нескольких приемников электрической энергии, соединительных проводов и различных вспомогательных устройств, включенных в эту цепь.

Внутренний участок, или внутренняя цепь,- это сам источник.

Падение напряжения - постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением.

Сопротивление проводника

Сопротивление – величина, пропорциональная длине проводника l и обратно пропорциональна площади его поперечного сечения S

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Удельное электрическое сопротивление проводника ρ [Ом*м] ρ=RS/l R = ρ*l/S

Закон Ома для участка цепи и для замкнутой цепи

Закон Ома для участка электрической цепи - сила тока на участке электрической цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка.

Закон Ома для полной электрической цепи - сила тока в электрической цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи (сумме внешнего и внутреннего сопротивлений)

I = ε / (R + r). где R - сопротивление внешнего участка цепи,
r - внутреннее сопротивление.

Последовательное соединение потребителей энергии

При последовательном соединении проводники соединены последовательно, то есть друг за другом, при этом I=const, U=U 1 +U 2 +U 3 +…+U n и R=R 1 +R 2 +R 3 +…+R n

Параллельное соединение источников тока.

Работа электрического тока

Работа эл.тока А равна произведению величины перемещаемого заряда Q на напряжение U

A=Q*U [A]=Дж, [U]=B, [Q]=Кл, [t]=c.

Т.к. I=Q/t, => Q=I*t, значит A=I*U*t

По закону Ома для участка цепи I=U/R, U=I*R

A=I*U*T => A=U 2 *t/R(удобно при паралл.соед.) => A=I 2 *R*t(удобно при последов.)

Природа света.

Природа света - волновая.

17 век Христиан Гюйгенс: 1) дифракция-огибание светом препятствий 2)интерференция-сложение волн.

19 век - теория максвелла (скорость света – частный случай электромагнитных волн) - электромагнитная теория скорость распространения электромагнитных волн в вакууме 3*10 8 м/c равная скорости света в вакууме. 299 тыс. км/с

17в век О.Ремер астрономическим методом получил скорость света примерно 214,3 км/с

19 век . Физо скорость света примерно 313тыс.км/с

Природа света – квантовая.

примерно 500 лет до н/э Пифагор: свет - поток частиц.

17 век Исак Ньютон придерживался этой же теории. Карпускула(от лат.) – частица.

Карпускулярная теория Ньютона: 1) прямолинейное распространение свет 2) закон отражения 3) образование тени от предметов

19 в Генрих Герц открыл явление фотоэффекта.

20 век. Свет имеет двойственную природу - обладает корпускулярно-волновым дуализмом : при распространении - как волна, а при излучении и поглощении - как поток частиц.

связь между длинной иволны лямда и частотой ню

лямда=с/ню с - скорость света в вакууме [м/с] лямда [м] ню [Гц]

Законы отражения

1.Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

2Угол отражения γ равен углу падения α: γ = α

Зеркальное отражение - если шероховатости меньше лямды и дифузное шероховатости сравнимы с лямда

Диффузное отражение света. Зеркальное отражение света.

Законы преломления света.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления γ есть величина, постоянная для двух данных сред:

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Природа света из 26.

Интерференция волн – это явление наложения когерентных волн; свойственно волнам любой природы (механическим, электромагнитным и т.д.)

Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.

При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:

Условие максимума:

где

Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн).

В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.

Условие минимума:

, где

Разность хода волн равна нечетному числу длин полуволн.

Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.

В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.

При интерференции волн амплитуда колебаний каждой точки не меняется во времени и остается постоянной.

При наложении некогерентных волн нет интерференционной картины, т.к. амплитуда колебаний каждой точки меняется со временем.

Интерференция света

1802г. Английский физик Томас Юнг поставил опыт, в котором наблюдалась интерференция света.


Опыт Томаса Юнга

От одного источника через щель А формировались два пучка света (через щели В и С), далее пучки света падали на экран Э. Так как воны от щелей В и С были когерентными, на экране можно было наблюдать интерференционную картину: чередование светлых и темных полос.

Светлые полосы – волны усиливали друг друга (соблюдалось условие максимума).
Темные полосы – волны складывались в противофазе и гасили друг друга (условие минимума).

Если в опыте Юнга использовался источник монохроматического света (одной длины волны, то на экране наблюдались только светлые и темные полосы данного цвета.)

Если источник давал белый свет (т.е. сложный по своему составу), то на экране в области светлых полос наблюдались радужные полосы. Радужность объяснялась тем, что условия максимумов и минимумов зависят от длин волн.


Интерференция в тонких пленках

Явление интерференции можно наблюдать, например:

Радужные разводы на поверхности жидкости при разливе нефти, керосина, в мыльных пузырях;

Толщина пленки должна быть больше длины световой волны.

При проведении своего опыта Юнгу впервые удалось измерить длину световой волны.

В результате опыта Юнг доказал, что свет обладает волновыми свойствами.

Применение интерференции:
- интерферометры – приборы для измерения длины световой волны
- просветление оптики (в оптических приборах при прохождении света через объектив потери света составляют до 50%) – все стеклянные детали покрывают тонкой пленкой с показателем преломления чуть меньше, чем у стекла; перераспределяются интерференционные максимумы и минимумы и потери света уменьшаются.

Природа света из 26.

ДИФРАКЦИЯ СВЕТА

Дифракция - это явление, присущее волновым процессам для любого рода волн.

Дифракция света – это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.

Явление дифракции света доказывает, что свет обладает волновыми свойствами.

Для наблюдения дифракции можно:

Пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Дифракционная решетка

Это оптический прибор для измерения длины световой волны.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

Если на решетку падает монохроматическая волна. то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.


Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.

Итак, условие максимума:

где k – порядок (или номер) дифракционного спектра

Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.

Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.

ПОЛЯРИЗАЦИЯ СВЕТА

Поляризация волн

Свойство поперечных волн – поляризация.

Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости.

Поляризация света

Опыт с турмалином – доказательство поперечности световых волн.

Кристалл турмалина – это прозрачный, зеленого цвета минерал, обладающий осью симметрии.

В луче света от обычного источника присутствуют колебания векторов напряженности электрического поля Е и магнитной индукции В всевозможных направлений, перпендикулярных направлению распространения световой волны. Такая волна называется естественной волной.

При прохождении через кристалл турмалина свет поляризуется.
У поляризованного света колебания вектора напряженности Е происходят только в одной плоскости, которая совпадает с осью симметрии кристалла.

Поляризация света после прохождения турмалина обнаруживается, если за первым кристаллом (поляризатором) поставить второй кристалл турмалина (анализатор).
При одинаково направленных осях двух кристаллов световой луч пройдет через оба и лишь чуть ослабнет за счет частичного поглощения света кристаллами.

Схема действия поляризатора и стоящего за ним анализатора:

Если второй кристалл начать поворачивать, т.е. смещать положение оси симметрии второго кристалла относительно первого, то луч будет постепенно гаснуть и погаснет совершенно, когда положение осей симметрии обоих кристаллов станет взаимно перпендикулярным.

Применение поляризованного света:

Плавная регулировка освещенности с помощью двух поляроидов
- для гашения бликов при фотографировании (блики гасят, поместив между источником света и отражающей поверхностью поляроид)

Для устранения слепящего действия фар встречных машин.

Поляроид, поляризационный светофильтр, один из основных типов оптических линейных поляризаторов; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками).

ДИСПЕРСИЯ

Луч белого света, проходя через трехгранную призму не только отклоняется, но и разлагается на составляющие цветные лучи.
Это явление установил Исаак Ньютон, проведя серию опытов.

Опыты Ньютона

Опыт по разложению белого света в спектр:

или

Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму.
Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.

Опыт по синтезу (получению) белого света:

Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.

Выводы Ньютона:

Призма не меняет свет, а только разлагает его на составляющие
- световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные

Красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет.
Зависимость показателя преломления света от его цвета называется дисперсией.

Запомни фразу, начальные буквы слов которой дают последовательность цветов спектра:

"Каждый Охотник Желает Знать, Где Сидит Фазан".

Спектр белого света:

Выводы:

Призма разлагает свет
- белый свет является сложным (составным)
- фиолетовые лучи преломляются сильнее красных.

Цвет луча света определяется его частотой колебаний.

При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.

Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме.
Белый свет – это совокупность волн длинами от 380 до 760 нм.

Где можно наблюдать явление дисперсии?

При прохождении света через призму
- преломление света в водяных каплях, например, на траве или в атмосфере при образовании радуги
- вокруг фонарей в тумане.

Как объяснить цвет любого предмета?

Белая бумага отражает все падающие на нее лучи различных цветов
- красный предмет отражает только лучи красного цвета, а лучи остальных цветов поглощает
-
Глаз воспринимает отраженные от предмета лучи определенной длины волны и таким образом воспринимает цвет предмета.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

Электрический ток и условия его существования.

Электрический ток – это упорядоченное, направленное, движение свободных зарядов в проводнике.

Постоянный ток – это эл.ток, характеристики которого со временем не меняются.

Условия существования электрического тока
Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:
-наличие в среде свободных электрических зарядов
-создание в среде электрического поля.
В разных средах носителями электрического тока являются разные заряженные частицы.

Сила тока I скалярная величина, характеризующая заряд Q, проходящий через поперечное сечение проводника за единицу времени. Q=q*N I=Q/t

Сила тока измеряется в амперах, а заряд в кулонах. I=[A], Q=[Кл]

Плотность тока – j векторная величина j V q , показывает силу тока на единицу S сеч.

j=I/S сеч Площадь сечения S сеч. измеряется в квадратных метрах

Сегодня нам трудно представить, как раньше люди могли обходиться без электричества. В настоящее время электричество стало частью нашей жизни. Множество электрических приборов, делающих нашу жизнь комфортной, подключаются к домашней электрической сети.

Мы не можем видеть движение электронов в проводнике, но их упорядоченное движение проявляется очень наглядно.

  1. Проводник, по которому проходит электрический ток, нагревается. Это явление используется в обогревательных приборах, лампах накаливания, электроплитках.
  2. Хорошими проводниками электрического тока являются электролиты. При прохождении через них тока электролит не только нагревается, но и на электродах выделяется вещество.
  3. Попробуем поднести к проводнику с током магнитную стрелку, и мы увидим, как она отклоняется от своего первоначального положения.

О том, что в проводнике протекает электрический ток, можно судить по его тепловому (1), химическому (2)или магнитному (3) действию.

Электрическим током называют упорядоченное (направленное) движение заряженных частиц .

Такими заряженными частицами в металлах являются свободные электроны, покинувшие внешние оболочки атомов. Свободные электроны, подобно молекулам идеального газа, беспорядочно движутся между атомами и ионами, находящимися в узлах кристаллической решетки.

Для возникновения электрического тока в проводнике необходимо создать в нем электрическое поле, которое поддерживается источниками электрического тока.

Таки образом, для существования тока в проводнике необходимы следующие условия:

1. Наличие свободных электронов.

2. Постоянно поддерживающееся в проводнике электрическое поле.

И снова доброго времени суток вам, уважаемые. Без лишних прелюдий начнём наш сегодняшний разговор. Казалось бы, с причинами возникновения тока в проводнике мы давно разобрались. Поместили проводник в поле – побежали электроны, возник ток. Что еще надо. Но оказывается, чтобы этот ток существовал в проводнике постоянно, необходимо соблюдать некоторые условия. Для более ясного понимания физики процесса протекания электрического тока в проводнике рассмотрим пример.

Предположим, что у нас имеется некоторый проводник, который мы поместим в электрическое поле как показано на рисунке 4.1.

Рисунок 4.1 – Проводник в электрическом поле

Условно обозначим величину напряженности на концах проводника как E 1 и E 2 , причем E 1 >E 2 . Как мы выяснили ранее, свободные электроны в проводнике начнут двигаться в сторону большей напряженности поля, то есть в точку А. Однако со временем потенциал, образованный скоплением электронов в точке А станет таким, что создаваемое им собственное электромагнитное поле E 0 сравняется по модулю с внешним полем, причем направления полей будут противоположными, поскольку потенциал точки В – более положительный (недостаток электронов, вызванный воздействием внешнего поля).

Поскольку результирующее действие двух одинаковых противоположных сил равно нулю: |E|+|(E 0)|=0, электроны прекращают упорядоченное движение, электрический ток прекращается. Для того, чтобы поток электронов был непрерывный необходимо: во-первых, приложить дополнительную силу не потенциального характера, которая бы компенсировала влияние собственного электрического поля проводника и, во-вторых, создать замкнутый контур, поскольку перемещение электронов может происходить только в проводниках (ранее мы указали, что диэлектрики хоть и имеют некоторую электропроводность, но не пропускают электрический ток) и для обеспечения постоянства компенсирующей силы необходимо постоянство полей: как внешнего так и собственного.

Начнём разбираться со второго пункта. Будем рассматривать проводник, помещенный в поле, как показано на рисунке 4.2. Предположим, что после того, как взаимодействие внешнего и собственного электромагнитных полей было скомпенсировано, мы приложили дополнительно к внешнему полю еще одно такое же поле. Суммарное действие внешнего поля составит 2 |E|. Ток в проводнике продолжит течь в том же направлении, однако ровно до того момента, пока 2 |E|>|E 0 |, после чего электрический ток вновь прекратиться. То есть внешнее воздействие должно увеличиваться непрерывно для обеспечения протекания тока в разомкнутом проводнике, что невозможно.
Если замкнуть проводник так, чтобы одна его часть лежала вне поля, тогда за счет работы дополнительной силы помимо внешнего поля (эта сила в таком случае должна быть не потенциальной, поскольку работа потенциальной силы в замкнутом контуре равна нулю и не зависит от формы траектории), то в проводнике возникнет электрический ток, обусловленный влиянием только внешнего поля, поскольку собственно поле проводника будет полностью скомпенсировано. Именно поэтому любая электрическая цепь всегда должна быть замкнутой.

Можно попробовать объяснить необходимость введения дополнительной силы из такого соображения: если бы мы могли заряды с конца В проводника частично перебрасывать на конец А проводника, электрический ток бы так же не прекращался. Однако, на такое «десантирование» так же требуется энергия. Значит, введение дополнительной силы всё равно необходимо. Не потенциальные силы так же называют сторонними силами. А их источники – источниками или генераторами тока.

Рисунок 4.2 – Возникновение собственного электромагнитного поля в проводнике

Так где же взять дополнительную силу, которая, притом, не должна быть создана полем, ведь без нее тока мы не получим? Оказывается, во время протекания химической восстановительно-окислительной реакции, например, взаимодействие диодксида свинца и разбавленной серной кислоты, происходит высвобождение свободных электронов:

Для того, чтобы «притянуть» все электроны, высвобожденные в процессе реакции к одной точки пространства, в раствор серной кислоты помещается несколько свинцовых решёток, называемых электродами. Одна часть электродов изготавливается из свинца и называется катод, другая – анод – изготавливается из диоксида свинца. Катод является источником свободных электродов для внешней цепи, а анод – приемником.

Приведённый пример соответствует известному всем автомобилистам (да и не только) устройству – свинцово-кислотному аккумулятору. Конечно, приведенный пример мало совпадает с тем, что происходит внутри аккумулятора в действительности, однако, суть возникновения тока отражает хорошо. Таким образом, между положительным анодом (мало электронов) и отрицательным катодом (много электронов) возникает электрическое поле, которое формирует сторонние силы и создаёт ток в проводнике. Эта сила зависит только от протекания химической реакции, то она практически постоянная до того момента, пока существуют элементы этой реакции – кислота и оксид свинца. Следовательно, если мы уберём электрическое поле и подключим проводник к аноду и катоду, электрический ток всё равно будет протекать из-за того, что аккумулятор создаёт стороннюю силу. Проводник будет иметь вокруг себя собственное электрическое поле, которое нужно преодолеть аккумулятору, чтобы перенести электрон от катода к аноду. В этом и есть суть сторонней силы.

Теперь рассмотрим ситуация с аккумулятором и подключенным к нему проводником.Электрическое поле совершает положительную работу по перемещению положительного заряда (мы говорим именно о положительных зарядах, так как направлению их движения соответствует направление тока) в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов – на одном полюсе накапливаются положительные заряды, на другом отрицательные. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.

На рисунке 4.3 показано направление протекания тока Iв проводнике, подключенному к аккумулятору – от положительного анода к отрицательному катоду, однако внутри аккумулятора сторонние силы химической реакции производят «десантирование» электронов, пришедших из внешней цепи с анода на катод и положительных ионов с катода на анод, то есть действуют против направления движения тока и направления поля.

Рисунок 4.3 – Демонстрация сторонних сил при возникновении электрического тока

Из сделанных выше соображений можно сделать следующий вывод: силы, действующие на заряд внутри источника тока отличны от сил, действующий внутри проводника. Соответственно, необходимо эти силы отличать друг от друга. Для характеристики сторонних сил была введена величина электродвижущей силы (ЭДС) – работы, совершаемой сторонними силами по перемещению единичного положительного заряда.Обозначается латинской буквой ε («эпсилон») и измеряется так же, как и разность потенциалов – в вольтах.

Поскольку разность потенциалов и ЭДС являются силами различного типа, можно говорить о том, что ЭДС вне выводов источника равно нулю. Хотя в обычной жизни этими тонкостями пренебрегают и говорят: «Напряжение на батарее 1.5В», хотя строго говоря напряжение на участке цепи – суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда. В будущем мы еще будем сталкиваться с этими понятиями и они пригодятся нам при расчете сложных электрических цепей.

На этом, пожалуй всё, потому что урок получился чересчур нагруженным… Но понятия напряжение и ЭДС нужно уметь отличать.

  • Для существования электрического тока необходимо два условия:
    1)замкнутая электрическая цепь;
    2)наличие источника сторонних непотенциальных сил.
  • Электродвижущая сила (ЭДС) – работа, совершаемая сторонними силами по перемещению единичного положительного заряда.
  • Источники сторонних сил в электрической цепи называются так же источниками тока.
  • Положительный вывод аккумулятора называется анод, отрицательный – катод.

Задачек на этот раз не будет, лучше лишний повторить этот урок, чтобы понимать всю физику протекания тока в проводнике. Как всегда любые возникшие вопросы, предложения и пожелания можете оставлять в комментариях ниже! До новых встреч!