Женский портал. Вязание, беременность, витамины, макияж
Поиск по сайту

Черная дыра время в ней. Определение черной дыры? Черная дыра может создать новые Вселенные

С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Бескрайняя Вселенная полна тайн, загадок и парадоксов. Несмотря на то, что современная наука сделала огромный скачок вперед в исследовании космоса, многое в этом бескрайнем мире остается непостижимым для человеческого мировосприятия. Нам достаточно много известно о звездах , туманностях, скоплениях и планетах. Однако на просторах Вселенной встречаются такие объекты, о существовании которых мы можем только догадываться. Например, о черных дырах нам известно крайне мало. Основные сведения и знания о природе черных дыр строятся на предположениях и догадках. Астрофизики, ученые-атомщики бьются над этим вопросом уже не один десяток лет. Что же такое черная дыра в космосе? Какова природа подобных объектов?

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав. Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды , где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца . Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Таинственные и неуловимые черные дыры. Законы физики подтверждают возможность их существования во вселенной, но сих пор остается множество вопросов. Многочисленные наблюдения показывают, что дыры существуют во вселенной и этих объектов - больше миллиона.

Что такое черные дыры?

Ещё в 1915 году при решении уравнений Эйнштейна было предсказано такое явление как «черные дыры». Однако научное сообщество заинтересовалось ими только в 1967 году. Их тогда называли «сколлапсировавшие звёзды», «застывшие звёзды».

Сейчас черной дырой называют область времени и пространства, которые обладают такой гравитацией, что из неё не может выбраться даже луч света.

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная - теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо. В то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение. Иными словами при уплотнении тяжелое ядро "падает" в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды. В это же время в центре звезды - ядро падает в свой собственный "центр". В результате действия сил гравитации центр обваливается в точку - т.е силы гравитации на столько сильны, что поглощают уплотненное ядро. Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению. Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой. В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Черные дыры и галактики

Как черные дыры могут влиять на галактики? Этот вопрос мучает ученых всего мира. Есть гипотеза, согласно которой именно черные дыры, находящиеся в центре галактики влияет на её формы и эволюцию. И что при столкновении двух галактик происходит слияние черных дыр и во время этого процесса выбрасывается такое огромное количество энергии и материи, что образуются новые звезды.

Типы черных дыр

  • Согласно существующей теории, есть три типа черных дыр: звездные, сверхмассивные, миниатюрные. И каждая из них сформировалась особым образом.
  • - Черные дыры звездных масс, она разрастается до огромных размеров и разрушается.
    - Сверхмассивные черные дыры, которые могут иметь массу, эквивалентную миллионам Солнц, с большой вероятностью существуют в центрах практически всех галактик, включая наш Млечный путь. Ученые все ещё имеют разные гипотизы образования сверхмассивных черных дыр. Пока известно только одно - сверхмассивные черные дыры - побочный продукт образования галактик. Сверхмассивные черные дыры - они отличаются от обычных тем, что имеют очень большой размер, но парадоксально маленькую плотность.
  • - Еще никто не смог обнаружить миниатюрную черную дыру, которая имела бы массу меньшую, чем Солнце. Вполне возможно, что миниатюрные дыры могли бы образоваться вскоре после «Большого взрыва», который является начальной точной существования нашей вселенной (около 13,7 млрд лет назад).
  • - Совсем недавно было введено новое понятие как "белые черные дыры". Это пока гипотетическая черня дыра, которая является противоположностью черной дыре. Активно изучал возможность существования белых дыр Стивен Хокинг.
  • - Квантовые черные дыры - они существуют пока только в теории. Квантовые черные дыры могут образовываться при столкновении сверхмалых частиц в результате ядерной реакции.
  • - Первичные черные дыры - тоже теория. Они образовались сразу после возникновения.

В данный момент существует большое количество открытых вопросов, на которые ещё предстоит ответить будущим поколениям. Например, могут ли в действительности существовать так называемые "кротовые норы", с помощью которых можно путешествовать по пространству и времени. Что именно происходит внутри черной дыры и каким законам подчиняются эти явления. И как быть с исчезновением информации в черной дыре?

Правообладатель иллюстрации Thinkstock

Возможно, вы думаете, что человека, попавшего в черную дыру, ждет мгновенная смерть. В действительности же его судьба может оказаться намного более удивительной, рассказывает корреспондент .

Что произойдет с вами, если вы попадете внутрь черной дыры? Может быть, вы думаете, что вас раздавит - или, наоборот, разорвет на клочки? Но в действительности все гораздо страннее.

В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вас мгновенно испепелит, в другой же - вы нырнете вглубь черной дыры живым и невредимым.

Внутри черной дыры не действуют привычные нам законы физики. Согласно Альберту Эйнштейну, гравитация искривляет пространство. Таким образом, при наличии объекта достаточной плотности пространственно-временной континуум вокруг него может деформироваться настолько, что в самой реальности образуется прореха.

Массивная звезда, израсходовавшая все топливо, может превратиться именно в тот тип сверхплотной материи, который необходим для возникновения подобного искривленного участка Вселенной. Звезда, схлопывающаяся под собственной тяжестью, увлекает за собой пространственно-временной континуум вокруг нее. Гравитационное поле становится настолько сильным, что даже свет больше не может из него вырваться. В результате область, в которой ранее находилась звезда, становится абсолютно черной - это и есть черная дыра.

Правообладатель иллюстрации Thinkstock Image caption Никто точно не знает, что происходит внутри черной дыры

Внешняя поверхность черной дыры называется горизонтом событий. Это сферическая граница, на которой достигается баланс между силой гравитационного поля и усилиями света, пытающегося покинуть черную дыру. Если пересечь горизонт событий, вырваться будет уже невозможно.

Горизонт событий лучится энергией. Благодаря квантовым эффектам, на нем возникают потоки горячих частиц, излучаемых во Вселенную. Это явление называется излучением Хокинга - в честь описавшего его британского физика-теоретика Стивена Хокинга. Несмотря на то, что материя не может вырваться за пределы горизонта событий, черная дыра, тем не менее, "испаряется" - со временем она окончательно потеряет свою массу и исчезнет.

По мере продвижения вглубь черной дыры пространство-время продолжает искривляться и в центре становится бесконечно искривленным. Эта точка известна как гравитационная сингулярность. Пространство и время в ней перестают иметь какое-либо значение, а все известные нам законы физики, для описания которых необходимы эти два понятия, больше не действуют.

Никто не знает, что именно ждет человека, попавшего в центр черной дыры. Иная вселенная? Забвение? Задняя стенка книжного шкафа, как в американском научно-фантастическом фильме "Интерстеллар"? Это загадка.

Давайте порассуждаем - на вашем примере - о том, что произойдет, если случайно попасть в черную дыру. Компанию в этом эксперименте вам составит внешний наблюдатель - назовем его Анной. Итак, Анна, находящаяся на безопасном расстоянии, в ужасе наблюдает за тем, как вы приближаетесь к границе черной дыры. С ее точки зрения события будут развиваться весьма странным образом.

По мере вашего приближения к горизонту событий Анна будет видеть, как вы вытягиваетесь в длину и сужаетесь в ширину, будто она рассматривает вас в гигантскую лупу. Кроме того, чем ближе вы будете подлетать к горизонту событий, тем больше Анне будет казаться, что ваша скорость падает.

Правообладатель иллюстрации Thinkstock Image caption В центре черной дыры пространство бесконечно искривлено

Вы не сможете докричаться до Анны (поскольку в безвоздушном пространстве звук не передается), но можете попытаться подать ей знак азбукой Морзе при помощи фонарика в вашем iPhone. Однако ваши сигналы будут достигать ее со все возрастающими интервалами, а частота света, испускаемого фонариком, будет смещаться в сторону красного (длинноволнового) участка спектра. Вот как это будет выглядеть: "Порядок, п о р я д о к, п о р я…".

Когда вы достигнете горизонта событий, то, с точки зрения Анны, замрете на месте, как если бы кто-то поставил воспроизведение на паузу. Вы останетесь в неподвижности, растянутым по поверхности горизонта событий, и вас начнет охватывать все возрастающий жар.

С точки зрения Анны, вас будут медленно убивать растяжение пространства, остановка времени и жар излучения Хокинга. Прежде чем вы пересечете горизонт событий и углубитесь в недра черной дыры, от вас останется один пепел.

Но не спешите заказывать панихиду - давайте на время забудем об Анне и посмотрим на эту ужасную сцену с вашей точки зрения. А с вашей точки зрения будет происходить нечто еще более странное, то есть ровным счетом ничего особенного.

Вы летите прямиком в одну из самых зловещих точек Вселенной, не испытывая при этом ни малейшей тряски - не говоря уже о растяжении пространства, замедлении времени или жаре излучения. Все потому, что вы находитесь в состоянии свободного падения и поэтому не чувствуете своего веса - именно это Эйнштейн назвал "самой удачной идеей" своей жизни.

Действительно, горизонт событий - это не кирпичная стена в космосе, а явление, обусловленное точкой зрения наблюдающего. Наблюдатель, остающийся снаружи черной дыры, не может заглянуть внутрь сквозь горизонт событий, но это его проблема, а не ваша. С вашей точки зрения никакого горизонта не существует.

Если бы размеры нашей черной дыры были меньше, вы и правда столкнулись бы с проблемой - гравитация действовала бы на ваше тело неравномерно, и вас вытянуло бы в макаронину. Но, по счастью для вас, данная черная дыра велика - она в миллионы раз массивнее Солнца, так что гравитационная сила достаточно слаба, чтобы можно было ею пренебречь.

Правообладатель иллюстрации Thinkstock Image caption Вы не можете вернуться и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое

Внутри достаточно крупной черной дыры вы даже сможете вполне нормально прожить остаток жизни, пока не умрете в гравитационной сингулярности.

Вы можете спросить, насколько нормальной может быть жизнь человека, помимо воли увлекаемого к дыре в пространственно-временном континууме без шанса на то, чтобы когда-нибудь выбраться наружу?

Но если вдуматься, нам всем знакомо это ощущение - только применительно ко времени, а не к пространству. Время идет только вперед и никогда вспять, и оно действительно влечет нас за собою помимо нашей воли, не оставляя нам шанса на возвращение в прошлое.

Это не просто аналогия. Черные дыры искривляют пространственно-временной континуум до такой степени, что внутри горизонта событий время и пространство меняются местами. В каком-то смысле вас влечет к сингулярности не пространство, а время. Вы не можете вернуться назад и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое.

Возможно, теперь вы задаетесь вопросом, что же не так с Анной. Вы летите себе в пустом пространстве черной дыры и с вами все в порядке, а она оплакивает вашу гибель, утверждая, что вас испепелило излучение Хокинга с внешней стороны горизонта событий. Уж не галлюцинирует ли она?

В действительности утверждение Анны совершенно справедливо. С ее точки зрения, вас действительно поджарило на горизонте событий. И это не иллюзия. Анна может даже собрать ваш пепел и отослать его вашим родным.

Правообладатель иллюстрации Thinkstock Image caption Горизонт событий - не кирпичная стена, он проницаем

Дело в том, что, в соответствии с законами квантовой физики, с точки зрения Анны вы не можете пересечь горизонт событий и должны остаться с внешней стороны черной дыры, поскольку информация никогда не теряется безвозвратно. Каждый бит информации, отвечающий за ваше существование, обязан оставаться на внешней поверхности горизонта событий - иначе с точки зрения Анны, будут нарушены законы физики.

С другой стороны, законы физики также требуют, чтобы вы пролетели сквозь горизонт событий живыми и невредимыми, не повстречав на своем пути ни горячих частиц, ни каких-либо иных необычных явлений. В противном случае будет нарушена общая теория относительности.

Итак, законы физики хотят, чтобы вы одновременно находились снаружи черной дыры (в виде горстки пепла) и внутри нее (в целости и сохранности). И еще один немаловажный момент: согласно общим принципам квантовой механики, информацию нельзя клонировать. Вам нужно находиться в двух местах одновременно, но при этом лишь в одном экземпляре.

Такое парадоксальное явление физики называют термином "исчезновение информации в черной дыре". По счастью, в 1990-х гг. ученым удалось этот парадокс разрешить.

Американский физик Леонард Зюсскинд понял, что никакого парадокса на самом деле нет, поскольку никто не увидит вашего клонирования. Анна будет наблюдать за одним вашим экземпляром, а вы - за другим. Вы с Анной никогда больше не встретитесь и не сможете сравнить наблюдения. А третьего наблюдателя, который мог бы наблюдать за вами как снаружи, так и изнутри черной дыры одновременно, не существует. Таким образом, законы физики не нарушаются.

Разве что вы захотите узнать, какой из ваших экземпляров реален, а какой нет. Живы вы в действительности или умерли?

Правообладатель иллюстрации Thinkstock Image caption Пролетит ли человек сквозь горизонт событий целым и невредимым или врежется в огненную стену?

Дело в том, что никакого "в действительности" нет. Реальность зависит от наблюдателя. Существует "в действительности" с точки зрения Анны и "в действительности" с вашей точки зрения. Вот и всё.

Почти всё. Летом 2012 г. физики Ахмед Альмхеири, Дональд Маролф, Джо Полчински и Джеймс Салли, коллективно известные под английской аббревиатурой из первых букв своих фамилий как AMPS, предложили мысленный эксперимент, который грозил перевернуть наше представление о черных дырах.

По словам ученых, разрешение противоречия, предложенное Зюсскиндом, основывается на том, что разногласие в оценке происходящего между вами и Анной опосредовано горизонтом событий. Неважно, действительно ли Анна видела, как один из двух ваших экземпляров погиб в огне излучения Хокинга, поскольку горизонт событий не давал ей увидеть ваш второй экземпляр, улетающей вглубь черной дыры.

Но что, если бы у Анны имелся способ узнать, что происходит по ту сторону горизонта событий, не пересекая его?

Общая теория относительности говорит нам, что это невозможно, но квантовая механика слегка размывает жесткие правила. Анна могла бы одним глазком заглянуть за горизонт событий при помощи того, что Эйнштейн называл "жутким дальнодействием".

Речь идет о квантовой запутанности - явлении, при котором квантовые состояния двух или более частиц, разделенных пространством, загадочным образом оказываются взаимозависимыми. Эти частицы теперь формируют единое и неделимое целое, а информация, необходимая для описания этого целого, заключена не в той или иной частице, а во взаимосвязи между ними.

Идея, выдвинутая AMPS, звучит следующим образом. Предположим, Анна берет частицу поблизости от горизонта событий - назовем ее частицей A.

Если ее версия произошедшего с вами соответствует действительности, то есть вас убило излучение Хокинга с внешней стороны черной дыры, значит, частица A должна быть взаимосвязана с другой частицей - B, которая также должна находиться с внешней стороны горизонта событий.

Правообладатель иллюстрации Thinkstock Image caption Черные дыры могут притягивать к себе материю близлежащих звезд

Если действительности соответствует ваше видение событий, и вы живы-здоровы с внутренней стороны, тогда частица A должна быть взаимосвязана с частицей C, находящейся где-то внутри черной дыры.

Прелесть этой теории заключается в том, что каждая из частиц может быть взаимосвязана только с одной другой частицей. Это значит, что частица A связана или с частицей B, или с частицей C, но не с обеими одновременно.

Итак, Анна берет свою частицу A и пропускает ее через имеющуюся у нее машинку для расшифровки запутанности, которая дает ответ - связана ли эта частица с частицей B или с частицей C.

Если ответ - C, ваша точка зрения восторжествовала в нарушение законов квантовой механики. Если частица A связана с частицей C, находящейся в недрах черной дыры, то информация, описывающая их взаимозависимость, оказывается навсегда утерянной для Анны, что противоречит квантовому закону, согласно которому информация никогда не теряется.

Если же ответ - B, то, вопреки принципам общей теории относительности, права Анна. Если частица A связана с частицей B, вас действительно испепелило излучение Хокинга. Вместо того, чтобы пролететь сквозь горизонт событий, как того требует теория относительности, вы врезались в стену огня.

Итак, мы вернулись к вопросу, с которого начинали - что произойдет с человеком, попавшим внутрь черной дыры? Пролетит ли он сквозь горизонт событий целым и невредимым благодаря реальности, которая удивительным образом зависит от наблюдателя, или врежется в огненную стену (black holes firewall , не путать с компьютерным термином firewall , "брандмауэр", программным обеспечением, защищающим ваш компьютер в сети от несанкционированного вторжения – Ред .)?

Никто не знает ответа на этот вопрос, один из самых спорных вопросов теоретической физики.

Уже свыше 100 лет ученые пытаются примирить принципы общей теории относительности и квантовой физики в надежде на то, что в конце концов та или другая возобладает. Разрешение парадокса "огненной стены" должно ответить на вопрос, какие из принципов взяли верх, и помочь физикам создать всеобъемлющую теорию.

Правообладатель иллюстрации Thinkstock Image caption А может, в следующий раз отправить в черную дыру Анну?

Решение парадокса исчезновения информации может крыться в дешифровальной машинке Анны. Определить, с какой именно другой частицей взаимосвязана частица A, чрезвычайно трудно. Физики Дэниэл Харлоу из Принстонского университета в Нью-Джерси и Патрик Хайден, который сейчас работает в калифорнийском Стэнфордском университете в Калифорнии, задались вопросом, сколько на это потребуется времени.

В 2013 г. они подсчитали, что даже при помощи наибыстрейшего компьютера, который возможно создать в соответствии с физическими законами, Анне потребовалось бы чрезвычайно много времени на то, чтобы расшифровать взаимосвязь между частицами - настолько много, что к тому моменту, как она получит ответ, черная дыра давным-давно испарится.

Если это так, вероятно, Анне просто не суждено когда-либо узнать, чья точка зрения соответствует действительности. В этом случае обе истории останутся одновременно правдивыми, реальность - зависящей от наблюдателя, и ни один из законов физики не будет нарушен.

Кроме того, связь между сверхсложными вычислениями (на которые наш наблюдатель, по всей видимости, не способен) и пространственно-временным континуумом может натолкнуть физиков на какие-то новые теоретические размышления.

Таким образом, черные дыры - не просто опасные объекты на пути межзвездных экспедиций, но и теоретические лаборатории, в которых малейшие вариации в физических законах вырастают до таких размеров, что ими уже невозможно пренебречь.

Если где-то и таится истинная природа реальности, искать ее лучше всего в черных дырах. Но пока у нас нет четкого понимания того, насколько безопасен для человека горизонт событий, наблюдать за поисками безопаснее все же снаружи. В крайнем случае можно в следующий раз отправить в черную дыру Анну - теперь ее очередь.

>

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

– одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:

Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

– удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 10 31 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 10 36 кг.

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

Допустим, что вам не повезло и ваш корабль неумолимо движется к сверхмассивной черной дыре. Нет смысла бороться. Вы просто выключили двигатели и идете навстречу неизбежному. Чего ожидать?

Начнем с невесомости. Вы пребываете в свободном падении, поэтому экипаж, корабль и все детали невесомы. Чем ближе подходите к центру отверстия, тем сильнее ощущаются приливные гравитационные силы. Например, ваши ноги ближе к центру, чем голова. Тогда вам начинает казаться, что вас растягивают. В итоге, вас просто разорвет на части.

Эти силы неприметны, пока вы не подойдете на удаленность в 600000 км от центра. Это уже после черты горизонта. Но мы говорим об огромном объекте. Если вы падаете в дыру с солнечной массой, то приливные силы охватили бы вас в 6000 км от центра и разорвали до того, как вы подошли к горизонту (поэтому мы отправляем вас в большую, чтобы смогли умереть уже внутри дыры, а не на подходе).

Что внутри? Не хочется разочаровывать, но ничего примечательного. Некоторые объекты могут искажаться по внешнему виду и больше ничего необычного. Даже после перехода горизонта вы будете видеть вещи вокруг себя, так как они движутся с вами.

Сколько на все это уйдет времени? Все завит от вашей удаленности. Например, вы начали с точки покоя, где сингулярность в 10 раз больше радиуса дыры. Для подхода к горизонту понадобится лишь 8 минут, а затем еще 7 секунд, чтобы войти в сингулярность. Если падаете в маленькую черную дыру, то все произойдет быстрее.

Как только перешагнете горизонт, можете стрелять ракетами, кричать и плакать. На все это у вас 7 секунд, пока не попадете в сингулярность. Но ничего уже не спасет. Поэтому просто насладитесь поездкой.

Допустим, вы обречены и падаете в дыру, а ваш друг/подруга наблюдает за этим издалека. Ну, он увидит все по-другому. Заметит, что ближе к горизонту вы замедлите свой ход. Но даже если человек просидит сотню лет, он так и не дождется, когда вы достигнете горизонта.

Попробуем объяснить. Черная дыра могла появиться из коллапсирующей звезды. Так как материал разрушается, то Кирилл (пусть будет вашим другом) видит его уменьшение, но никогда не заметит подхода к горизонту. Именно поэтому их называли «замороженными звездами», ведь кажется, будто они замерзают с определенным радиусом.

В чем же дело? Назовем это оптической иллюзией. Для формирования дыры не нужна бесконечность, как и для перехода через горизонт. По мере вашего подхода свету требуется больше времени, чтобы добраться к Кириллу. Если точнее, то излучение в реальном времени от вашего перехода зафиксируется у горизонта навечно. Вы уже давно перешагнули за линию, а Кирилл все еще наблюдает световой сигнал.

Или же можно подойти с другой стороны. Время тянется дольше возле горизонта. Например, вы обладаете супермощным кораблем. Вам удалось приблизиться к горизонту, побыть там пару минут и выбраться живым к Кириллу. Кого же вы увидите? Старика! Ведь для вас время текло намного медленнее.

Что тогда верно? Иллюзия или игра времени? Все зависит от используемой системы координат при описании черной дыры. Если полагаться на координаты Шварцшильда, то при пересечении горизонта временная координата (t) приравнивается к бесконечности. Но показатели этой системы предоставляют размытое представление того, что происходит возле самого объекта. У линии горизонта все координаты искажаются (сингулярность). Но вам можно использовать обе системы координат, поэтому два ответа имеют силу.

В реальности вы просто станете невидимкой, и Кирилл перестанет вас видеть еще до того, как пройдет много времени. Не стоит забывать о красном смещении. Вы излучаете наблюдаемый свет на определенной волне, но Кирилл увидит его на более длинной. Волны удлиняются по мере приближения к горизонту. Кроме того, не стоит забывать, что излучение происходит в определенных фотонах.

Например, в момент перехода вы отправите последний фотон. Он достигнет Кирилла в определенное конечное время (примерно час для сверхмассивной черной дыры).

Конечно, нет. Не забывайте про существование горизонта событий. Только из этой области вы не можете выбраться. Достаточно просто не приближаться к ней и чувствуйте себя спокойно. Более того, с безопасного расстояния вам этот объект будет казаться самым обычным.

Информационный парадокс Хокинга

Физик Эмиль Ахмедов о действии гравитации на электромагнитные волны, информационном парадоксе черных дыр и принципе предсказуемости в науке:

Не паникуйте, так как Солнцу никогда не трансформироваться в подобный объект, потому что ему просто не хватит массы. Тем более, что оно будет сохранять свой теперешний внешний вид еще 5 миллиардов лет. Затем перейдет к этапу красного гиганта, поглотив Меркурий, Венеру и хорошо поджарив нашу планету, а затем станет обычным белым карликом.

Но давайте предадимся фантазии. Итак, Солнце стало черной дырой. Начнем с того, что сразу нас укутает темнота и холод. Земля и прочие планеты не будут всасываться в дыру. Они продолжат вращаться вокруг нового объекта по обычным орбитам. Почему? Потому что горизонт будет достигать всего 3 км, и гравитация ничего не сможет с нами сделать.

Да. Естественно, мы не можем полагаться на видимое наблюдение, так как свету не удается вырваться. Но есть косвенные улики. Например, вы видите участок, в котором может быть черная дыра. Как это проверить? Начните с измерения массы. Если видно, что в одной области ее слишком много или она как бы незаметна, то вы на верном пути. Есть две точки поиска: галактический центр и двойные системы с рентгеновским излучением.

Таким образом, в 8 галактиках нашли массивные центральные объекты, чья масса ядер колеблется от миллиона до миллиарда солнечных. Массу вычисляют через наблюдение за скоростью вращения звезд и газа вокруг центра. Чем быстрее, тем больше должна быть масса, чтобы удержать их на орбите.

Эти массивные объекты считают черными дырами по двум причинам. Ну, больше просто нет вариантов. Нет ничего массивнее, темнее и компактнее. К тому же есть теория, что у всех активных и крупных галактиках в центре прячется такой монстр. Но все же это не 100% доказательства.

Но в пользу теории говорят две последних находки. У ближайшей активной галактики заметили систему «водяного мазера» (мощный источник микроволнового излучения) возле ядра. При помощи интерферометра ученые отобразили распределение газовых скоростей. То есть, они измерили скорость в пределах половины светового года в галактическом центре. Это помогло им понять, что внутри расположен массивный объект, чей радиус достигает половины светового года.

Вторая находка убеждает еще больше. Исследователи при помощи рентгена наткнулись на спектральную линию галактического ядра, указывающую на присутствие рядом атомов, скорость движения которых невероятно высокая (1/3 световой). Кроме того, излучение соответствовало красному смещению, что отвечает горизонту черной дыры.

Еще один класс можно найти в Млечном Пути. Это звездные черные дыры, формирующиеся после взрыва сверхновой. Если бы они существовали отдельно, то даже вблизи мы бы вряд ли ее заметили. Но нам везет, ведь большинство существуют в двойных системах. Их легко отыскать, так как черная дыра будет тянуть массу своего соседа и влиять на него гравитацией. «Вырванный» материал формирует аккреционный диск, в котором все нагревается, а значит, создает сильное излучение.

Предположим, вам удалось найти двойную систему. Как понять, что компактный объект представляет собою черную дыру? Снова обращаемся к массе. Для этого измерьте орбитальную скорость соседней звезды. Если масса невероятно огромная при таких малых размерах, то вариантов больше не остается.

Это сложный механизм. Подобную тему Стивен Хокинг затронул еще в 1970-х годах. Он говорил, что черные дыры не совсем «черные». Там присутствуют квантово-механические эффекты, заставляющие ее создавать излучение. Постепенно дыра начинает сжиматься. Скорость излучения растет с уменьшением массы, поэтому дыра излучает все больше и ускоряет процесс сжатия, пока не растворится.

Однако, это лишь теоретическая схема, ведь никто не может точно сказать, что происходит на последнем этапе. Некоторые думают, что остается небольшой, но стабильный след. Современные теории не придумали пока ничего лучше. Но сам процесс невероятен и сложен. Приходится вычислять параметры в искривленном пространстве-времени, а сами результаты не поддаются проверке в привычных условиях.

Здесь можно воспользоваться Законом сохранения энергии, но только для коротких продолжительностей. Вселенная может создавать энергию и массу с нуля, но только они должны быстро исчезать. Одно из проявлений – вакуумные флуктуации. Пары частиц и античастиц вырастают из ниоткуда, существуют определенный недолгий срок и гибнут во взаимном уничтожении. При их появлении энергетический баланс нарушается, но все восстанавливается после исчезновения. Кажется фантастикой, но этот механизм подтвержден экспериментально.

Допустим, одна из вакуумных флуктуаций действует возле горизонта черной дыры. Возможно, одна из частиц падает внутрь, а вторая убегает. Сбежавшая забирает с собою часть энергии дыры и может попасть на глаза наблюдателю. Ему покажется, что темный объект просто выпустил частицу. Но процесс повторяется, и мы видим непрерывный поток излучения из черной дыры.

Мы уже говорили, что Кириллу кажется, будто вам нужна бесконечность, чтобы перешагнуть через линию горизонта. Кроме того, упоминалось, что черные дыры испаряются через конечный временной промежуток. То есть, когда вы достигнете горизонта, дыра исчезнет?

Нет. Когда мы описывали наблюдения Кирилла, мы не говорили о процессе испарения. Но, если этот процесс присутствует, то все меняется. Ваш друг увидит, как вы перелетите через горизонт именно в момент испарения. Почему?

Над Кириллом властвует оптическая иллюзия. Излучаемому свету в горизонте событий нужно много времени, чтобы добраться к другу. Если дыра длится вечно, то свет может идти бесконечно долго, и Кирилл не дождется перехода. Но, если дыра испарилась, то свет уже ничто не остановит, и он доберется к парню в момент взрыва излучения. Но вам уже все равно, ведь вы давно погибли в сингулярности.

В формулах общей теории относительности есть интересная особенность – симметричность во времени. Например, в любом уравнении вы можете представить, что время течет назад и получите другое, но все же правильно, решение. Если применить этот принцип к черным дырам, то рождается белая дыра.

Черная дыра – определенная область, из которой ничто не может выбраться. Но второй вариант, это белая дыра, в которую ничто не может упасть. Фактически, она все отталкивает. Хотя, с математической точки зрения, все выглядит гладко, но это не доказывает их существование в природе. Скорее всего, их нет, как и способа это выяснить.

До этого момента мы говорили о классике черных дыр. Они не вращаются и лишены электрического заряда. А вот в противоположном варианте начинается самое интересное. Например, вы можете попасть внутрь, но избежать сингулярности. Более того, ее «внутренность» способна контактировать с белой дырой. То есть, вы попадете в своеобразный туннель, где черная дыра – вход, а белая – выход. Подобную комбинацию называют червоточиной.

Интересно, что белая дыра может находиться в любом месте, даже в другой Вселенной. Если уметь управлять такими червоточинами, то мы обеспечим быструю транспортировку в любую область пространства. А еще круче – возможность путешествий во времени.

Но не пакуйте рюкзак, пока не узнаете несколько моментов. К сожалению, велика вероятность, что таких формирований нет. Мы уже говорили, что белые дыры – вывод из математических формул, а не реальный и подтвержденный объект. Да и все наблюдаемые черные дыры создают падение материи и не формируют червоточин. И конечная остановка – сингулярность.