Женский портал. Вязание, беременность, витамины, макияж
Поиск по сайту

Закон Моргана – сцепленное наследование. Сцепление наследования генов. Генетика пола Полное сцепленное наследование

Хромосомный уровень организации наследственного материала. Хромосомы, как группы сцепления генов.

Из принципов генетического анализа вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в разных парах хромосом. Следовательно, у каждого организма, число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, очевидно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно. Остается допустить, что в каждой хромосоме находится не один ген, а много. Если это так, то следует признать, что третье правило Менделя касается только распределения хромосом, а не генов, т.е. его действие ограничено. Анализ проявления третьего правила показал, что в некоторых случаях новые комбинации генов у гибридов совсем отсутствовали, т.е. наблюдалось полное сцепление между генами исходных форм и в фенотипе наблюдалось расщепление 1:1. В других случаях комбинация признаков отмечалась с меньшей частотой, чем ожидается при независимом наследовании.

В 1906 году У. Бетсон описал нарушение менделевского закона независимого наследования двух признаков. Возникли вопросы: почему не все признаки наследуются и как они наследуются, как расположены гены в хромосомах, каковы закономерности наследования генов, находящихся в одной хромосоме? На эти вопросы смогла ответить хромосомная теория наследственности, созданная Т. Морганом, в 1911 году.

Т. Морган, изучив все отклонения, предложил называть совместное наследование генов, ограничивающее их свободное комбинирование, сцеплением генов или сцепленным наследованием.

Закономерности полного и неполного сцепления. Группы сцепления у человека.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер наблюдается в мейозе. Он обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, как и сцепление генов, характерно для животных, растений, микроорганизмов. Исключение составляют самцы дрозофилы и самки тутового шелкопряда. Кроссинговер обеспечивает рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О наличии кроссинговера можно судить на основе учета частоты возникновения организмов с новым сочетанием признаков. Явление кроссинговера было открыто Морганом на дрозофиле.

Запись генотипа дигетерозиготы при независимом наследовании:

А В

Запись генотипа дигетерозиготы при сцепленном наследовании:

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а не претерпевшие – некроссоверными.

АВ, ав Ав, аВ

Некроссоверные гаметы. Кроссоверные гаметы.

Соответственно организмы, возникшие от сочетания кроссоверных гамет, называют кроссоверами или рекомбинантами, а возникшие от сочетания некроссоверных гамет – некроссоверами или нерекомбинантами .

Явление кроссинговера, как и сцепление генов, можно рассмотреть и в классическом опыте Т. Моргана при скрещивании дрозофил.

Признак

P♀ BV x ♂ bv

серый цвет тела

черный цвет тела

нормальные крылья

рудиментарные крылья

Анализирующее скрещивание

1. Полное сцепление генов.

2. Неполное сцепление генов.

1. Полное сцепление

P♀ bv x ♂ BV

F 2 bv bv

расщепление – 1:1

2. Неполное сцепление (кроссинговер)

P:♀ BV x ♂ bv

G: BV bv Bv bV bv

некроссоверные кроссоверные

F 2 BV bv Bv bV

некроссоверов – 83% кроссоверов – 17%

Для измерения расстояния между генами путем анализирующего скрещивания можно применять формулу:

где:

X – расстояние между генами в % кроссинговера или в морганидах;

а – количество особей 1-й кроссоверной группы;

в – количество особей 2-й кроссоверной группы;

n – общее количество гибридов в опыте;

100% – коэффициент для перевода в проценты.

На основании исследования сцепленного наследования Морган сформулировал тезис, вошедший в генетику под названием правило Моргана : гены, локализованные в одной хромосоме, наследуются сцеплено, причем сила сцепления зависит от расстояния между ними.

Сцепленные гены расположены в линейном порядке и частота кроссинговера между ними прямо пропорциональна расстоянию между ними. Однако, этот тезис характерен только для близко лежащих друг к другу генов. В случае же относительно удаленных генов наблюдается некоторое отклонение от такой зависимости.

Морган предложил выражать расстояние между генами в процентах кроссинговера между ними. Расстояние между генами также выражают в морганидах или сантиморганидах. Морганида – генетическое расстояние между генами, где происходит кроссинговер с частотой 1%.

По частоте кроссинговера между двумя генами можно судить об относительном расстоянии между ними. Так, если между генами А и В кроссинговер составляет 3%, а между генами В и С – 8% кроссинговера, то между А и С кроссинговер должен происходить с частотой либо 3+8=11%, либо 8-3=5%, в зависимости от того, в каком порядке эти гены расположены в хромосоме.

А ─ ─ ─ В ─ ─ ─ ─ ─ ─ ─ ─ С В ─ ─ ─ А ─ ─ ─ ─ ─ ─ ─ ─ С

Задача 1. Катаракта и полидактилия наследуются как доминантные аутосомные признаки. Женщина унаследовала катаракту от отца, полидактилию от матери. Гены сцеплены, расстояние между ними 3М. Каковы генотипы и фенотипы детей от брака этой женщины и мужчины нормального по этим признакам? Какова вероятность рождения здоровых детей?

катаракта

P ♀ аВ х ♂ ав

полидактилия

Х = АВ = 3 Морг.

P ♀ аВ х ♂ ав

Ответ: вероятность рождения здорового ребенка – 1,5%, имеющих по 1 признаку – 48,5%, имеющих оба признака – 1,5%

G: (аВ) (Ав) (ав)

F1 аВ Ав ав АВ

ав ав ав ав

48,5% 48,5% 1,5% 1,5%

Генетическая карта хромосомы – это схема, отображающая порядок расположения генов на относительном расстоянии их друг от друга. О расстоянии между сцепленными генами судят по частоте кроссинговера между ними. Генетические карты всех хромосом составлены для наиболее изученных в генетическом отношении организмов: дрозофилы, кур, мышей, кукурузы, томатов, нейроспоры. Для человека также составлены генетические карты всех 23 хромосом.

После установления линейной дискретности хромосом возникла необходимость составления цитологических карт с целью сопоставления с генетическими, составленными на основе учета рекомбинаций.

Цитологическая карта – это карта хромосомы, на которой определяется расположение и относительное расстояние между генами в самой хромосоме. Построение их ведется на основе анализа хромосомных перестроек, дифференциальной окраски политенных хромосом, радиоактивных меток и др.

К настоящему времени, у ряда растений и животных построены и сопоставлены генетические и цитологические карты. Реальность этого сопоставления подтверждает правильность принципа о линейном расположении генов в хромосоме.

У человека можно назвать некоторые случаи сцепленного наследования.

    Гены, контролирующие наследование групп крови по системе АВ0 и синдрома дефекта ногтей и коленной чашечки, наследуются сцепленно.

    Сцеплены гены резус-фактора и овальной формы эритроцитов.

    В третьей аутосоме расположены гены группы крови Лютеран и секреции антигенов А и В со слюной.

    Гены полидактилии и катаракты наследуются сцепленно.

    В Х-хромосоме расположены гены гемофилии и дальтонизма, а также гены цветовой слепоты и мышечной дистрофии Дюшена.

    В 6 аутосоме находятся сублокусы А, В, С, D/DR системы HLA, контролирующих синтез антигенов гистосовместимости.

Наследование признаков Х-сцепленных и голандрических.

Признаки, контролируемые генами, расположенными в половых хромосомах, называются сцепленным с полом. У человека описано более 60 заболеваний, сцепленных с полом, большинство из которых наследуются рецессивно. Гены в половых хромосомах можно разделить на 3 группы:

    Гены частично сцепленные с полом. Они расположены в парных сегментах Х и Y хромосом . К заболеваниям частично сцепленным с полом относят: геморрагический диатез, судорожные расстройства, пигментный ретинит, пигментную ксеродерму, общую цветовую слепоту.

    Гены полностью сцепленные с полом. Они расположены в участке Х хромосомы , для которого нет гомологичного участка в Y хромосоме (гетерологическом). Эти гены контролируют заболевания: атрофия зрительного нерва, мышечная дистрофия Дюшена, дальтонизм, гемофилия, способность ощущать запах синильной кислоты.

    Гены, расположенные в участке Y хромосомы , для которого нет гомологичного локуса в Х хромосоме, называются голандрическими . Они контролируют признаки: синдактилия, гипертрихоз ушной раковины.

Ген дальтонизма проявляется у 7% мужчин и у 0,5% женщин, но носительницами этого гена являются 13% женщин.

Сцепленное с полом наследование было описано Т. Морганом на примере наследования признака окраски глаз у дрозофилы.

Отмечено несколько закономерностей наследования сцепленных с полом признаков:

      передаются крест на крест (от отца – дочери, от матери – сыну);

      результаты прямого и обратного скрещиваний не совпадают;

      у гетерогаметного пола признак проявляется в любом состоянии (доминантном или рецессивном).

Основные положения хромосомной теории наследственности.

Основные положения хромосомной теории наследственности можно сформулировать следующим образом:

    Гены находятся в хромосомах. Каждый ген в хромосоме занимает определенный локус. Гены в хромосомах расположены линейно.

    Каждая хромосома представляет группу сцепленных генов. Число групп сцепления у каждого вида равно числу пар хромосом.

    Между гомологичными хромосомами происходит обмен аллельными генами – кроссинговер.

    Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними. Зная расстояние между генами можно вычислить процентное соотношение генотипов у потомства.

Сцепленное наследование . Независимое распределение генов (второй закон Менделя) основано на том, что гены, относящиеся к разным аллелям, размещены в разных парах гомологичных хромосом. Естественно возникает вопрос: а как же будет происходить распределение разных (неаллельных) генов в ряду поколений, если они лежат в одной и той же паре хромосом? Такое явление должно иметь место, ибо число генов во много раз превосходит число хромосом. Очевидно, к генам, находящимся в одной хромосоме, закон независимого распределения (второй закон Менделя) не применим. Он ограничен лишь теми случаями, когда гены разных аллелей находятся в различных хромосомах.

Закономерность наследования при нахождении генов в одной хромосоме была тщательно изучена Т. Морганом и его школой. Основным объектом исследований служила небольшая плодовая мушка дрозофила

Это насекомое исключительно удобно для генетической работы. Мушка легко разводится в лабораторных условиях, каждые 10–15 дней при оптимальной для нее температуре 25–26° С дает новое поколение, обладает многочисленными и разнообразными наследственными признаками, имеет небольшое число хромосом (в диплоидном наборе – 8).

Опыты показали, что гены, локализованные в одной хромосоме, оказываются сцепленными , т. е. наследуются преимущественно вместе, не обнаруживая независимого распределения. Рассмотрим конкретный пример. Если скрестить дрозофилу с серым телом и нормальными крыльями с мушкой, обладающей темной окраской тела и зачаточными крыльями, то в первом поколении все мушки будут серыми, с нормальными крыльями. Это гетерозигота по двум парам аллелей (серое тело – темное тело и нормальные крылья – зачаточные крылья). Проведем скрещивание. Скрестим самок этих дигетерозиготных мух (серое тело и нормальные крылья) с самцами, обладающими рецессивными признаками – темным телом и зачаточными крыльями. Исходя из второго , можно было бы ожидать получения в потомстве мух четырех : 25 % серых, с нормальными крыльями; 25 % серых, с зачаточными крыльями; 25 % темных, с нормальными крыльями; 25 % темных, с зачаточными крыльями.

На самом деле в опыте мух с исходной комбинацией признаков (серое тело – нормальные крылья, темное тело – зачаточные крылья) оказывается значительно больше (в данном опыте по 41,5 %), чем мух с перекомбинированными признаками (серое тело – зачаточные крылья и темное тело – нормальные крылья).

Их будет всего по 8,5 % каждого типа. На этом примере видно, что гены, обусловившие признаки серое тело – нормальные крылья и темное тело – зачаточные крылья, наследуются преимущественно вместе, или, иначе говоря, оказываются сцепленными между собой. Это сцепление является следствием локализации генов в одной и той же хромосоме. Поэтому при мейозе эти гены не расходятся, а наследуются вместе. Явление сцепления генов, локализованных в одной хромосоме, известно под названием закона Моргана.

Почему же все-таки среди гибридов второго поколения появляется небольшое число особей с перекомбинацией родительских признаков? Почему сцепление генов не является абсолютным? Исследования показали, что эта перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации гомологичных хромосом они иногда обмениваются своими участками, или, иначе говоря, между ними происходит перекрест.

Ясно, что при этом гены, находившиеся первоначально в одной из двух гомологичных хромосом, окажутся в разных гомологичных хромосомах. Между ними произойдет перекомбинация. Частота перекреста для разных генов оказывается различной. Это зависит от расстояния между ними. Чем ближе в хромосоме расположены гены, тем реже они разделяются при перекресте. Это происходит потому, что хромосомы обмениваются различными участками, и близко расположенные гены имеют больше вероятности оказаться вместе. Исходя из этой закономерности удалось для хорошо изученных в отношении организмов построить генетические карты хромосом, на которых нанесено относительное расстояние между генами.

Биологическое значение перекреста хромосом очень велико. Благодаря ему создаются новые наследственные комбинации генов, повышается наследственная изменчивость, которая поставляет материал для .

Генетика пола . Хорошо известно, что у раздельнополых организмов (в том числе и у человека) соотношение полов обычно составляет 1:1. Какие причины определяют пол развивающегося организма? Вопрос этот издавна интересовал человечество ввиду его большого теоретического и практического значения. Хромосомный набор самцов и самок у большинства раздельнополых организмов неодинаков. Познакомимся с этими различиями на примере набора хромосом у дрозофилы.

По трем парам хромосом самцы и самки не отличаются друг от друга. Но в отношении одной пары имеются существенные различия. У самки две одинаковые (парные) палочковидные хромосомы; у самца только одна такая хромосома, пару которой составляет особая, двуплечая хромосома. Те хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми. Таким образом, хромосомный набор дрозофилы слагается из шести аутосом и двух половых хромосом. Половую, палочковидную хромосому, присутствующую у самки в двойном числе, а у самца – в единичном, называют X-хромосомой; вторую, половую (двуплечую хромосому самца, отсутствующую у самки) – У-хромосомой.

Каким образом рассмотренные половые различия в хромосомных наборах самцов и самок поддерживаются в процессе ? Для ответа на этот вопрос необходимо выяснить поведение хромосом в мейозе и при оплодотворении. Сущность этого процесса представлена на рисунке.

При созревании половых клеток у самки каждая яйцеклетка в результате мейоза получает набор из четырех хромосом: три аутосомы и одну Х-хромосому. У самцов в равных количествах образуются сперматозоиды двух сортов. Одни несут три аутосомы и Х-хромосому, другие – три аутосомы и У-хромосому. При оплодотворении возможны две комбинации. Яйцеклетка с равной вероятностью может быть оплодотворена спермием с Х- или У-хромосомой. В первом случае из оплодотворенного яйца разовьется самка, а во втором – самец. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

У человека хромосомный механизм определения пола тот же, что и у дрозофилы. Диплоидное число хромосом человека – 46. В это число входят 22 пары аутосом и 2 половые хромосомы. У женщин это две Х-хромосомы, у мужчин – одна Х- и одна У-хромосома.

Соответственно у мужчин образуются сперматозоиды двух сортов – с Х- и У-хромосомами.

У некоторых раздельнополых организмов (например, некоторых насекомых) У-хромосома вообще отсутствует. В этих случаях у самца оказывается на одну хромосому меньше: вместо Х- и У- у него имеется одна Х-хромосома. Тогда при образовании мужских гамет в процессе мейоза Х-хромосома не имеет партнера для конъюгации и отходит в одну из клеток. В результате половина всех сперматозоидов имеет Х-хромосому, а другая половина лишена ее. При оплодотворении яйца спермием с Х-хромосомой получается комплекс с двумя X-хромосомами, и из такого яйца развивается самка. Если яйцеклетка будет оплодотворена спермием без Х-хромосомы, то разовьется организм с одной Х-хромосомой (полученной через яйцеклетку от самки), который будет самцом.

Во всех рассмотренных выше примерах развиваются спермин двух категорий: либо с Х- и У-хромосомами (дрозофила, человек), либо половина спермиев несет Х-хромосому, а другая совсем лишена . Яйцеклетки в отношении половых хромосом все одинаковы. Во всех этих случаях мы имеем мужскую гетерогаметность (разногаметность). Женский пол гомогаметен (равногаметен). Наряду с этим в природе встречается и другой тип определения пола, характеризующийся женской гетерогаметностью. Здесь имеют место отношения обратные только что рассмотренным. Разные половые хромосомы или только одна Х-хромосома свойственны женскому полу. Мужской пол обладает парой одинаковых Х-хромосом. Очевидно, в этих случаях будет иметь место женская гетерогаметность. После мейоза образуются яйцевые клетки двух сортов, тогда как в отношении хромосомного комплекса все спермин одинаковы (все несут одну Х-хромосому). Следовательно, пол зародыша будет определяться тем, какое яйцо – с Х- или У-хромосомой – будет оплодотворено.

1. У человека имеется два вида слепоты, и каждая определяется своим рецессивным аутосомным геном, которые не сцеплены. Какова вероятность рождения слепого ребенка, если отец и мать страдают одним и тем же видом слепоты и оба дигомозиготны? Какова вероятность рождения слепого ребенка, если оба родителя дигомозиготны и страдают разными видами наследственной слепоты?

Объяснение:

Первое скрещивание:

Р: ААвв х ААвв

Г: Ав х Ав

F1: ААвв - слепой ребенок.

Проявляется закон единообразия. Вероятность рождения слепого ребенка - 100%.

Второе скрещивание:

Р: ААвв х ааВВ

Г: Ав х аВ

F1: АаВв - здоровый ребенок.

Проявляется закон единообразия. Оба вида слепоты отсутствуют. Вероятность рождения слепого ребенка - 0%.

2. У человека дальтонизм обусловлен сцепленным с Х-хромосомой рецессивным геном. Талассемия наследуется как аутосомный доминантный признак и наблюдается в двух формах: у гомозигот - тяжелая, часто смертельная, у гетерозигот - в легкой форме.

Женщина с легкой формой талассемии и нормальным зрением в браке с мужчиной-дальтоником, но здоровым по гену талассемии, имеет сына-дальтоника с легкой формой талассемии. Какова вероятность рождения у этой пары детей с обеими аномалиями? Определите генотипы и фенотипы возможного потомства.

Объяснение:

Р: АаХDХd х ааХdУ

Г: АХD, аХd, AXd, aXD х аХd, аУ

F1: АаХdУ - мальчик-дальтоник с легкой формой талассемии

AaXDXd - девочка с нормальным зрением и легкой формой талассемии

aaXdXd - девочка-дальтоник без талассемии

AaXdXd - девочка-дальтоник с легкой формой талассемии

aaXDХd - девочка с нормальным зрением без талассемии

AaXDY - мальчик с нормальным зрением и легкой формой талассемии

aaXdY - мальчик-дальтоник без талассемии

aaXDY - мальчик с нормальным зрением и без талассемии

То есть получается восемь вариантов генотипа с равной вероятностью появления. Вероятность рождения ребенка с легкой формой талассемии и дальтонизмом составляет 2/8 или 25% (12,5% вероятность рождения мальчика и 12,5% - рождения девочки). Вероятность рождения ребенка-дальтоника с тяжелой формой талассемии - 0%.

3. В брак вступили голубоглазый светловолосый мужчина и дигетерозиготная кареглазая темноволосая женщина. Определите генотипы супружеской пары, а также возможные генотипы и фенотипы детей. Установите вероятность рождения ребенка с дигомозиготным генотипом.

Объяснение: А - карие глаза

а - голубые глаза

В - темные волосы

в - светлые волосы

Р: аавв х АаВв

Г: ав х АВ, ав, Ав, аВ

F1: АаВв - карие глаза, темные волосы

аавв - голубые глаза, светлые волосы

Аавв - карие глаза, светлые волосы

ааВв - голубые глаза, темные волосы

Вероятность рождения ребенка с каждым из генотипов - 25%. (и вероятность рождения ребенка с дигомозиготным генотипом (аавв) - 25%)

Признаки не сцеплены с полом. Здесь проявляется закон независимого наследования.

4. При скрещивании серой (а) мохнатой крольчихи с черным мохнатым кроликом в потомстве наблюдалось расщепление: крольчата черные мохнатые и серые мохнатые. Во втором скрещивании фенотипически таких же кроликов получилось потомство: крольчата черные мохнатые, черные гладкошерстные, серые мохнатые, серые гладкошерстные. Какой закон наследственности проявляется в данных скрещиваниях?

Объяснение:

А - черная окраска

а - серая окраска

В - мохнатый кролик

в - гладкошерстный кролик

Первое скрещивание:

Р: ааВВ х АаВВ

F1: АаВВ - черные мохнатые крольчата

ааВВ - серые мохнатые крольчата

Второе скрещивание:

Р: ааВв х АаВв

Г: аВ, ав х АВ, ав, Ав, аВ

F1: получается 8 генотипов и 4 фенотипа

АаВВ, 2АаВв - серые мохнатые крольчата

Аавв - черные гладкошерстные крольчата

ааВВ, ааВв - серые мохнатые крольчата

аавв - серые гладкошерстные крольчата

В данном случае действует закон независимого наследования, так как представленные признаки наследуются независимо.

5. Для хохлатой (А) зеленой (В) самки провели анализирующее скрещивание, в потомстве получилось четыре фенотипических класса. Получившихся хохлатых потомков скрестили между собой. Может ли в этом скрещивании получить потомство без хохолка? Если может, то какого оно будет пола, какого фенотипа? У канареек наличие хохолка зависит от аутосомного гена, окраска оперения (зеленое или коричневое) - от гена, сцепленного с Х-хромосомой. Гетерогаметным полом у птиц является женский пол.

Объяснение:

Первое скрещивание:

Р: АаХВУ х ааХвХв

Г: АХВ, аХВ, АУ, аУ х аХв

F1: АаХВХв - хохлатый зеленый самец

ааХВХв - зеленый самец без хохолка

АаХвУ - хохлатая коричневая самка

Скрещиваем самца и самку с хохолком:

Р: АаХВХв х АаХвУ

Г: АХВ, АХв, аХВ, аХв х АХв, АУ, аХв, аУ

F2: получаем 16 генотипов, среди которых можно выделить только 4 фенотипа.

Фенотипы особей без хохолка:

Самки: ааХВУ - зеленая самка без хохолка

ааХвУ - коричневая самка без хохолка

Самцы: ааХВХв - зеленый самец без хохолка

ааХвХв - коричневый самец без хохолка.

6. В скрещивании самок дрозофил с нормальными крыльями и нормальными глазами и самцов с редуцированными крыльями и маленькими глазами все потомство имело нормальные крылья и нормальные глаза. Получившихся в первом поколении самок возвратно скрещивали с исходной родительской особью. Форма крыльев у дрозофилы определяется аутосомным геном, ген размера глаз находится в Х-хромосоме. Составьте схемы скрещиваний, определите генотипы и фенотипы родительских особей и потомства в скрещиваниях. Какие законы действуют в скрещиваниях?

Объяснение:

А - нормальные крылья

а - редуцированные крылья

ХВ - нормальные глаза

Первое скрещивание:

Р: ААХВХВ х ввХвУ

Г: АХВ х аХв, аУ

АаХВХв - нормальные крылья, нормальные глаза

АаХВУ - нормальные крылья, нормальные глаза

Второе скрещивание:

Р: АаХВХв х ааХвН

Г: АХВ, аХв, АХв, аХв х аХв, аУ

АаХВХв, АаХВУ - нормальные крылья, нормальные глаза

ааХвХв, ааХвУ - редуцированные крылья, маленькие глаза

АаХвХв, АаХвУ - нормальные крылья, маленькие глаза

ааХВХв, ааХВУ - редуцированные крылья, нормальные глаза

Здесь действует закон сцепленного с полом наследования (ген формы глаз наследуется с Х-хромосомой), а ген крыльев наследуется независимо.

7. При скрещивании мухи дрозофилы, имеющей серое тело (А) и нормальные крылья (В), с мухой, имеющей черное тело и закрученные крылья, получено 58 мух с серым телом и нормальными крыльями, 52 - с черным телом и закрученными крыльями, 15 - с серым телом и закрученными крыльями, 14 - с черным телом и нормальными крыльями. Составьте схему решения задачи. Определите генотипы родительских особей, потомства. Объясните формирование четырех фенотипических классов. Какой закон действует в данном случае?

Объяснение: А - серое тело

а - черное тело

В - нормальные крылья

в - закрученные крылья

Скрещивание: Р: АаВв х аавв

Г: АВ, ав, Ав, аВ х ав

F1: АаВв - серое тело, нормальные крылья - 58

аавв - черное тело, закрученные крылья - 52

Аавв - серое тело, закрученные крылья - 15

ааВв - черное тело, нормальные крылья - 14

Гены А и В и а и в сцеплены, поэтому они они образуют группы 58 и 52 особи, а в случае остальных двух групп произошел кроссинговер и эти гены перестали быть сцеплены, поэтому и образовали 14 и 15 особей.

8. При анализирующем скрещивании дигетерозиготного высокого с круглыми плодами растения томата получено расщепление потомства по фенотипу: 38 растений высоких с округлыми плодами, 10 - высоких с грушевидными плодами, 10 - карликовых с округлыми плодами, 42 - карликовых с грушевидными плодами. Составьте схему скрещивания, определите генотипы и фенотипы исходных особей, потомства. Объясните формирование четырех фенотипических классов.

Объяснение:

А - высокое растение

а - карликовое растение

В - круглые плоды

в - грушевидные плоды

Р: АаВв х аавв

G: АВ, ав, аВ, Ав х ав

F1: АаВв - высокие растения с круглыми плодами - 38

аавв - карликовые растения с грушевидными плодами - 42

ааВв - карликовые растения с круглыми плодами - 10

Аавв - высокие растения с грушевидными плодами - 10

Здесь можно выделить две группы признаков:

1. АаВв и аавв - в первом случае наследуются сцепленно А и В, а во втором - а и в.

2. ааВв и Аавв - здесь произошел кроссинговер.

9. У человека нерыжие волосы доминируют над рыжими. Отец и мать гетерозиготные рыжие. У них восемь детей. Сколько среди них может оказаться рыжих? Есть ли однозначный ответ на этот вопрос?

Объяснение: А - нерыжие волосы

а - рыжие волосы

Р: Аа х Аа

Г: А, а х А, а

F1: АА: 2Аа: аа

Расщепление по генотипу - 1:2:1.

Расщепление по фенотипу - 3:1. Следовательно, вероятность рождения нерыжего ребенка - 75%. Вероятность рождения рыжего ребенка - 25%.

Однозначного ответа на вопрос нет, так как невозможно предположить генотип будущего ребенка, так как могут встретиться половые клетки с разными генотипами.

10. Определите генотипы родителей в семье, где все сыновья дальтоники, а дочери здоровы.

Объяснение: XDXd - здоровая девочка

XdY - мальчик - дальтоник

Такая ситуация будет более возможна если мать-дальтоник (так как женский пол гомогаметный), а отец - здоров (гетерогаметный пол).

Напишем схему скрещивания.

P: XdXd x XDY

G: Xd x XD, Y

F1: XDXd - девочка здоровая, но носитель гена дальтонизма.

XdY - мальчик-дальтоник

11. У человека глаукома наследуется как аутосомно-рецессивный признак (а), а синдром Марфана, сопровождающийся аномалией в развитии соединительной ткани, - как аутосомно-доминантный признак (В). Гены находятся в разных парах аутосом. Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана, а второй дигетерозиготен по данным признакам. Определите генотипы родителей, возможные генотипы и фенотипы детей, вероятность рождения здорового ребенка. Составьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

Объяснение: глаукома - рецессивный признак и проявляется только при гомозиготе, а синдром Марфана проявляется как при гетеро-, так и при гомозиготе, но является доминантным признак, соответственно, определим генотипы родителей: один родитель страдает глаукомой - аа, но не страдает синдромом Марфана - вв, а второй родитель по обоим признакам гетерозиготен - АаВв.

Р: аавв х АаВв

G: ав х АВ, ав, Ав, аВ

F1: АаВв - нормальное зрение + синдром Марфана

аавв - глаукома

Аавв - нормальное зрение, нет синдрома Марфана - здоровый ребенок

ааВв - глаукома + синдром Марфана

Нарисовав решетку Пеннета, можно увидеть, что вероятность рождения каждого ребенка одинакова - 25%, значит и вероятность рождения здорового ребенка будет такая же.

Гены данных признаков не являются сцепленными, а значит проявляется закон независимого наследования.

12. Скрестили низкорослые (карликовые) растения томата с ребристыми плодами и растения нормальной высоты с гладкими плодами. В потомстве были получены две фенотипические группы растений: низкорослые и гладкими плодами и нормальной высоты с гладкими плодами. При скрещивании растений томата низкорослых с ребристыми плодами с растениями, имеющими нормальную высоту стебля и ребристые плоды, все потомство имело нормальную высоту стебля и ребристые плоды. Составьте схемы скрещивания. Определите генотипы родителей и потомства растений томата в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

Объяснение: в первом скрещивании дигомозигота скрещивается с гомозиготным растением по одному признаку и гетерозиготным по другому (чтобы это понять, нужно написать несколько вариантов, данное потомство получается только при таких родителях). во втором скрещивании все проще - скрещивается две дигомозиготы (только у второго родителя один признак будет доминантным).

а - низкорослые особи

А - нормальная высота

в - ребристые плоды

В - гладкие плоды

P: аавв х АаВВ

F1: ааВв - низкорослые особи с гладкими плодами

АаВв - нормальная высота, гладкие плоды

P: аавв х ААвв

F1: Аавв - нормальная высота, гладкие плоды.

В обоих случаях проявляется закон независимого наследования, так как эти два признака наследуются независимо.

13. По изображенной на рисунке родословной определите и объясните характер наследования признака, выделенного черным цветом. Определите генотипы родителей, потомков, обозначенных на схеме цифрами 2, 3, 8, и объясните их формирование.

Объяснение: так как в первом поколении мы видим единообразие, а во втором поколении - расщепление 1:1, делаем вывод, что оба родителя были гомозиготны, но один по рецессивному признаку, а другой - по доминантному. То есть в первом поколении все дети - гетерозиготны. 2 - Аа, 3 - Аа, 8 - аа.

14. При скрещивании пестрой хохлатой (В) курицы с таким же петухом было получено восемь цыплят: четыре цыпленка пестрых хохлатых, два - белых (а) хохлатых и два - черных хохлатых. Составьте схему решения задачи. Определите генотипы родителей и потомства, объясните характер наследования признаков и появление особей с пестрой окраской. Какие законы наследственности проявляются в данном случае?

Объяснение: такое расщепление возможно только если родители гетерозиготны по окраске, то есть пестрая окраска имеет генотип - Аа

АА - черная окраска

аа - белая окраска

Аа - пестрая окраска

P: АаВВ х АаВВ

G: АВ, аВ

F1: АаВВ - пестрый хохлатый (4 цыпленка)

ааВВ - белый хохлатый (два цыпленка)

ААВВ - черный хохлатый

По окраске расщепление по генотипу и фенотипу одинаковое: 1:2:1, так как здесь присутствует явление неполного доминирования (между и черной и белой окраской появляется промежуточный вариант), признаки наследуются независимо.

15. У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизм - d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец - с нормальным слухом (гомозиготен), дальтоник, родилась девочка-дальтоник с нормальным слухом. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и вероятность в будущем рождения в этой семье детей-дальтоников с нормальным слухом и глухих.

Объяснение: из условия задачи видно, что мать гетерозиготна по гену глухоты и гомозиготна по гену слепоты, а отец - имеет ген слепоты и гетерозиготен по гену глухоты. Тогда дочь будет гомозиготна по гену слепоты и гетерозиготна по гену глухоты.

P: (мать)XDXd x (отец)XdYBB

дочь - XdXdBb - дальтоник, слух нормальный

Гаметы - XDb, Xdb, XdB, YB

Дети: XDXdBb - нормальное зрение, нормальный слух

XDYBb - нормальное зрение, нормальный слух

XdXdBb - дальтоник, нормальный слух

XdYBb - дальтоник, нормальный слух

Расщепление: 1:1:1:1, то есть вероятность рождения дальтоника с нормальным слухом - 50%, а вероятность рождения глухих дальтоников - 0%.

16. У мужа и жены нормальное зрение, несмотря на то, что отцы обоих супругов страдают цветовой слепотой (дальтонизмом). Ген дальтонизма рецессивен и сцеплен с Х-хромосомой. Определите генотипы мужа и жены. Составьте схему решения задачи. Какова вероятность рождения у них сына с нормальным зрением, дочери с нормальным зрением, сына-дальтоника, дочери-дальтоника?

Объяснение: допустим матери мужа и жены были здоровы.

Распишем еще и возможные генотипы родителей мужа и жены.

P: XDXD x XdY XDXD x XdY

↓ ↓

XDXd x XDY

Возможные генотипы детей:

XDXD - здоровая девочка

XDY - здоровый мальчик

XDXd - здоровая девочка

XdY - мальчик-дальтоник

Вероятность рождения ребенка с каждым из генотипов равна 25%. Вероятность рождения здоровой девочки - 50% (в одном случае ребенок гетерозиготен, в другом - гомозиготен). Вероятность рождения девочки-дальтоника - 0%. Вероятность рождения мальчика-дальтоника - 25%.

17. У гороха посевного желтая окраска семян доминирует над зеленой, выпуклая форма плодов - над плодами с перетяжкой. При скрещивании растения с желтыми выпуклыми плодами с растением, имеющим желтые семена и плоды с перетяжкой, получили 63 растения с желтыми семенами и выпуклыми плодами. 58 - с желтыми семенами и плодами с перетяжкой, 18 - с зелеными семенами и выпуклыми плодами и 20 - с зелеными семенами и плодами с перетяжкой. Составьте схему решения задачи. Определите генотипы исходных растений и потомков. Объясните появление различных фенотипических групп.

Объяснение:

А - желтая окраска

а - зеленая окраска

В - выпуклая форма

в - плоды с перетяжкой

Внимательно прочитав условие задачи, можно понять, что одно родительское растение является дигетерозиготным, а второй - гомозиготно по форме плода, а гетерозиготно по цвету семени.

Напишем схему решения задачи:

P: АаВв х Аавв

G: АВ, ав, Ав, аВ х Ав, ав

F1: получается расщепление 3:1 и следующие потомки первого поколения:

63 - А_Вв - желтые семена, выпуклые плоды

58 - А_вв - желтые семена, плоды с перетяжкой

18 - ааВв - зеленые семена, выпуклая форма плода

20 - аавв - зеленые семена, плоды с перетяжкой

Здесь наблюдаем закон независимого наследования, так как каждый признак наследуется независимо.

18. У львиного зева красная окраска цветков неполно доминирует над белой, а узкие листья над широкими. Гены располагаются в разных хромосомах. Скрещиваются растения с розовыми цветками и листьями промежуточной ширины с растениями, имеющими белые цветки и узкие листья. Составьте схему решения задачи. Какое потомство и в каком соотношении можно ожидать от этого скрещивания? Определите тип скрещивания, генотипы родителей и потомства. Какой закон имеет место в данном случае.

Объяснение: АА - красная окраска

Аа - розовая окраска

аа - белая окраска

ВВ - узкие листья

Вв - листья промежуточной ширины

вв - широкие листья

Скрещивание:

Р: АаВв х ааВВ

Г: АВ, ав, Ав, аВ х аВ

F1: АаВВ - розовые цветки, узкие листья

ааВв - белые цветки, листья промежуточной ширины

АаВв - розовые цветки, листья промежуточной ширины

ааВВ - белые цветки, узкие листья

Вероятность появления цветков с каждым из генотипов - 25%.

Скрещивание дигибридное (так как анализ идет по двум признакам).

В данном случае действуют законы неполного доминирования и независимого наследования признаков.

Задания для самостоятельного решения

1. У собак черная шерсть доминирует над коричневой, а длинная шерсть над короткой (гены не сцеплены). От черной длинношерстной самки при анализирующем скрещивании получено потомство: 3 черных длинношерстных щенка, 3 коричневых длинношерстных. Определите генотипы родителей и потомства, соответствующие их фенотипам. Составьте схему решения задачи. Объясните полученные результаты.

2. У овец серая окраска (А) шерсти доминирует над черной, а рогатость (В) - над комолостью (безрогостью). Гены не сцеплены. В гомозиготном состоянии ген серой окраски вызывает гибель эмбрионов. Какое жизнеспособное потомство (по фенотипу и генотипу) и в каком соотношении можно ожидать от скрещивания дигетерозиготной овцы с гетерозиготным серым комолым самцом? Составьте схему решения хадачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

3. У кукурузы рецессивный ген "укороченные междоузлия" (b) находится в одной хромосоме с рецессивным геном "зачаточная метелка" (v). При проведении анализирующего скрещивания дигетерозиготного растения, имеющего нормальные междоузлия и нормальную метелку, получено потомство: 48% с нормальными междоузлиями и нормальной метелкой, 48% с укороченными междоузлиями и зачаточной метелкой, 2% с нормальными междоузлиями и зачаточной метелкой, 2% с укороченными междоузлиями и нормальной метелкой. Определите генотипы родителей и потомства. Составьте схему решения задачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

4. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, дающим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При анализирующем скрещивании гибридов из F1 получены растения с гладкими окрашенными семенами, с морщинистыми неокрашенными, с морщинистыми окрашенными, с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1 и F2. Какие законы наследственности проявляются в данных скрещиваниях? Объясните появление четырех фенотипических групп особей в F2?

5. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При дальнейшем анализирующем скрещивании гибрида из F1 получены растения с семенами: 7115 с гладкими окрашенными, 7327 с морщинистыми неокрашенными, 218 с морщинистыми окрашенными, 289 с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1, F2. Какой закон наследственности проявляется в F2? Объясните, на чем основан ваш ответ.

6. У человека катаракта (заболевание глаз) зависит от доминантного аутосомного гена, а ихтиоз (заболевание кожи) - от рецессивного гена, сцепленного с Х-хромосомой. Женщина со здоровыми глазами и с нормальной кожей, отец которой страдал ихтиозом, выходит замуж за мужчину, страдающего катарактой и со здоровой кожей, отец которого не имел этих заболеваний. Составьте схему решения задачи. Определите генотипы родителей, возможные генотипы и фенотипы детей. Какие законы наследственности проявляются в данном случае?

7. При скрещивании белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью получено потомство: 50% черных мохнатых и 50% черных гладких. При скрещивании другой пары белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью 50% потомства оказалось черных мохнатых и 50% - белых мохнатых. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Объясните, какой закон проявляется в данном случае?

8. При скрещивании растения арбуза с длинными полосатыми плодами с растением, имеющим круглые зеленые плоды, в потомстве получили растения с длинными зелеными и круглыми зелеными плодами. При скрещивании такого же арбуза с длинными полосатыми плодами с растением, имеющим круглые полосатые плоды, все потомство имело круглые полосатые плоды. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Как называется такое скрещивание и для чего оно проводится?

9. Темноволосая голубоглазая женщина, дигомозиготная, вступила в брак с темноволосым голубоглазым мужчиной, гетерозиготным по первой аллели. Темный цвет волос и карие глаза - это доминантные признаки. Определите генотипы родителей и потомства, типы гамет и вероятные генотипы детей.

10. Темноволосая женщина с кудрявыми волосами, гетерозиготная по первому признаку вступила в брак с мужчиной, имеющим темные шладкие волосы, гетерозиготным по первой аллели. Темные и кудрявые волосы - это доминантные признаки. Определите генотипы родителей, типы гамет, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

11. Темноволосая кареглазая женщина, гетерозиготная по первой аллели вступила в брак со светловолосым кареглазым мужчиной, гетерозиготным по второму признаку. Темные волосы и карие глаза - доминантные признаки, светлые волосы и голубые глаза - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

12. Скрестили красноглазую серую (А) дрозофилу, гетерозиготную по двум аллелям, с красноглазой черной (ХВ) дрозофилой, гетерозиготной по первой аллели. Определите генотипы родителей, гаметы, которые они вырабатывают, численное соотношение расщепления потомства по генотипу и фенотипу.

13. Черную мохнатую крольчиху, гетерозиготную по двум аллелям скрестили с белым мохнатым кроликом, гетерозиготным по второй аллели. Черный мохнатый мех - доминантные признаки, белый гладкий мех - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, численное соотношение расщепление потомства по фенотипу.

14. У матери 3-я группа крови и положительные резус-фактор, а у отца - 4-я группа крови и резус-фактор отрицательные. Определите генотипы родителей, гаметы, которые они вырабатывают, и возможные генотипы детей.

15. От черной кошки родился один черепаховый и несколько черных котят. Указанные признаки сцеплены с полом, то есть гены окраски находятся только в половых Х-хромосомах. Ген черной окраски и ген рыжей окраски дает неполное доминирование, при сочетании этих двух генов получается черепаховая окраска. Определите генотип и фенотип отца, гаметы, которые вырабатывают родители, пол котят.

16. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Указанные признаки сцеплены с полом, то есть гены находятся только в половых Х-хромосомах. Серая окраска тела доминирует над желтой. Определите генотипы родителей, гаметы. которые они вырабатывают, и численное расщепление потомства по полу и окраске тела.

17. У томата гены, обусловливающие высокий рост растения (А) и круглую форму плода (В), сцеплены и локализованы в одной хромосоме, а гены, обусловливающие низкий рост и грушевидную форму, - в аутосоме. Скрестили гетерозиготное растение томата, имеющее высокий рост и круглую форму плода, с низким грушеплодным растением. Определите генотипы и фенотипы потомства родителей, гаметы, образующиеся в мейозе, если перекреста хромосом не было.

18. У дрозофилы доминантные гены нормального крыла и серой окраски тела сцеплены и локализованы в одной хромосоме, а рецессивные гены зачаточности крыла и черной окраски тела - в другой гомологичной хромосоме. Скрестили двух дигетерозиготных дрозофил, имеющих нормальные крылья и серую окраску тела. Определите генотип родителей и гаметы, образующиеся без перекреста хромосом, а также численное соотношение расщепления потомства по генотипу и фенотипу.

19. Каковы генотипы родителей и детей, если у светловолосой матери и темноволосого отца в браке родилось пять детей, все темноволосые? Какой закон наследственности проявляется?

20. Каковы генотипы родителей и потомства, если от скрещивания коровы с красной окраской шерсти с черным быком все потомство получено черное? Определите доминантный и рецессивный гены и характер доминирования.

21. Какие фенотипы и генотипы возможны у детей, если у матери первая группа крови и гомозиготный резус-положительный фактор, а у отца четвертая группа крови и резус-отрицательный фактор (рецессивный признак)? Определите вероятность рождения детей с каждым из указанных признаков.

22. В семье родился голубоглазый ребенок, похожий по этому признаку на отца. Мать у ребенка кареглазая, бабушка по материнской линии - голубоглазая, а дедушка - кареглазый. По отцовской линии бабушка и дедушка - кареглазые. Определите генотипы родителей и бабушки с дедушкой по отцовской линии. Какова вероятность рождения в этой семье кареглазого ребенка?

23. Женщина со светлыми волосами и прямым носом вступила в брак с мужчиной, имеющим темные волосы и римский нос, гетерозиготный по первому признаку и гомозиготный по второму. Темные волосы и римский нос - доминантные признаки. Каковы генотипы и гаметы родителей? Каковы вероятные генотипы и фенотипы детей?

24. От черепаховой кошки родилось несколько котят, один из которых оказался рыжей кошкой. У кошек гены окраски шерсти сцеплены с полом и находятся только в Х-хромосомах. Черепаховая окраска шерсти возможна при сочетании гена черной и рыжей окраски. Определите генотипы родителей и фенотип отца, а также генотипы потомства.

25. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Определите гаметы, вырабатываемые родителями, а также численное соотношение расщепления гибридов по фенотипу (по полу и окраске тела) и генотипу. Указанные признаки сцеплены с полом и находятся только в Х-хромосомах. Серая окраска тела - доминантный признак.

26. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с растением, имеющим белые морщинистые семена. Кроссинговер в мейозе не произошел. Определите гаметы, вырабатываемые родителями.

27. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с гомозиготным растением, имеющим темные гладкие семена. В мейозе происходит кроссинговер. Определите гаметы, вырабатываемые родителями, без кроссинговера и после кроссинговера.

28. При скрещивании мохнатой белой крольчихи с мохнатым черным кроликом в потомстве появился один гладкий белый крольчонок. Определите генотипы родителей. В каком численном соотношении можно ожидать расщепление потомства по генотипу и фенотипу?

29. Охотник купил собаку, которая имеет короткую шерсть. Ему важно знать, что она чистопородна. Какие действия помогут охотнику определить, что его собака не несет рецессивных генов - длинной шерсти? Составьте схему решения задачи и определите соотношение генотипов потомства, полученного от скрещивания чистопородной собаки с гетерозиготной.

30. Мужчина страдает гемофилией. Родители его жены здоровы по этому признаку. Ген гемофилии (h) находится в половой Х-хромосоме. Составьте схему решения задачи. Определите генотипы супружеской пары, возможного потомства, вероятность рождения дочерей-носительниц этого заболевания.

31. Гипертрихоз передается у человека с У-хромосомой, а полидактилия (многопалость) - аутосомный доминантный признак. В семье, где отец имел гипертрихоз, а мать - полидактилию, родилась нормальная дочь. Составьте схему решения задачи и определите генотип рожденной дочери и вероятность того, что следующий ребенок будет с двумя аномальными признаками.

32. Скрестили дигетерозиготные растения томатов с округлыми плодами (А) и с опушенными листьями (В) с растениями, имеющими овальные плоды и неопушенный эпидермис листа. Гены, отвечающие за строение эпидермиса листа и форму плодов, наследуются сцепленно. Составьте схему решения задачи. Определите генотипы родителей, генотипы и фенотипы потомства, вероятность появления в потомстве растений с рецессивными признаками.

33. При скрещивании томата с пурпурным стеблем (А) и красными плодами (В) и томата с зеленым стеблем и красными плодами получили 750 растений с пурпурным стеблем и красными плодами и 250 растений с пурпурным стеблем и желтыми плодами. Доминантные гены пурпурной окраски стебля и красного цвета плодов наследуются независимо. Составьте схему решения задачи. Определите генотипы родителей, потомства в первом поколении и соотношение генотипов и фенотипов у потомства.

34. Растение дурман с пурпурными цветками (А) и гладкими коробочками (в) скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и колючими коробочками, с белыми цветками и гладкими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.

35. Скрестили два растения львиного зева с красными и белыми цветками. Их потомство оказалось с розовыми цветками. Определите генотипы родителей, гибридов первого поколения и тип наследования признаков.

36. Скрещивается коричневая (а) длинношерстная (в) самка с гомозиготным черным (А) короткошерстным (В) самцом (гены не сцеплены). Составьте схему решения задачи и определите генотипы и соотношение по фенотипу потомков их первого поколения. Каково соотношение генотипов и фенотипов второго поколения от скрещивания дигетерозигот. Какие генетические закономерности проявляются в этом скрещивании?

37. У свиней черная окраска щетины (А) доминирует над рыжей, длинная щетина (В) - над короткой (гены не сцеплены). Скрестили черного с длинной щетиной дигетерозиготного самца с гомозиготной черной с короткой щетиной самкой. Составьте схему решения задачи. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

38. Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а другой гетерозиготен по этому гену. Составьте схему решения задачи и определите вероятность рождения детей, у которых отсутствуют малые коренные зубы.

Такое понятие, как наследование признаков, широко изучается в генетике. Именно им объясняется сходство потомства и родителей. Любопытно, что некоторые проявления признаков наследуются совместно. Это явление, впервые подробно описанное ученым Т. Морганом, стало называться «сцепленное наследование». Поговорим о нем подробнее.

Как известно, каждый организм обладает определенным количеством генов. Хромосом же при этом - также строго ограниченная цифра. Для сравнения: здоровый человеческий организм обладает 46 хромосомами. Генов же в нем в тысячи раз больше. Судите сами: каждый ген отвечает за тот или иной признак, проявляющийся во внешнем облике человека. Естественно, их очень много. Поэтому стали говорить о том, что несколько генов локализуются в одной хромосоме. Называются эти гены группой сцепления и определяют сцепленное наследование. Подобная теория витала в научной среде довольно долгое время, однако лишь Т. Морган дал ей определение.

В отличие от наследования генов, которые локализованы в разных парах одинаковых хромосом, сцепленное наследование обусловливает образование дигетерозиготной особью только двух типов гамет, повторяющих комбинацию родительских генов.

Наряду с этим возникают гаметы, комбинация генов в которых отличается от хромосомного набора родителей. Этот результат является следствием кроссинговера - процесса, важность которого в генетике переоценить сложно, поскольку он позволяет потомству получить различные признаки от обоих родителей.

В природе существуют три типа наследования генов. Для того чтобы определить, какой тип присущ именно данной их паре, применяют В результате обязательно получится один из трех вариантов, приведенных ниже:

1. Независимое наследование. В подобном случае гибриды отличаются друг от друга и от родителей по внешнему виду, иначе говоря, в результате мы имеем 4 варианта фенотипов.

2. Полное сцепление генов. Гибриды первого поколения, получившиеся при скрещивании родительских особей, полностью повторяют фенотип родителей и неотличимы между собой.

3. Неполное сцепление генов. Так же, как и в первом случае, при скрещивании получается 4 класса различных фенотипов. При этом, однако, происходит образование новых генотипов, полностью отличных от родительского фонда. Именно в таком случае в процесс образования гамет вмешивается кроссинговер, упомянутый выше.

Также установлено, что, чем меньше расстояние между наследуемыми генами в родительской хромосоме, тем выше вероятность их полного сцепленного наследования. Соответственно, чем дальше друг от друга они располагаются, тем реже происходит перекрест при мейозе. Расстояние между генами - фактор, в первую очередь определяющий вероятность сцепленного наследования.

Отдельно необходимо рассмотреть сцепленное наследование, связанное с полом. Суть его та же, что и при варианте, рассмотренном выше, однако наследуемые гены в данном случае расположены в половых хромосомах. Поэтому говорить о таком типе наследования можно лишь в случае млекопитающих (человек в их числе), некоторых пресмыкающихся и насекомых.

Принимая во внимание факт того, что XY - это набор хромосом, соответствующий мужскому полу, а XX - женскому, отметим, что все основные признаки, отвечающие за жизнеспособность организма, расположены в хромосоме, присутствующей в генотипе каждого организма. Конечно, речь идет о Х - хромосоме. У женских особей могут наличествовать как рецессивные, так и в хромосомах. Мужские же могут наследовать лишь один из вариантов - то есть либо ген проявляет себя в фенотипе, либо нет.

Сцепленное наследование, обусловленное полом, часто звучит в контексте заболеваний, которые свойственны именно мужчинам, в то время как женщины являются лишь их носителями:

  • гемофилия,
  • дальтонизм;
  • синдром Леша - Найхана.