Женский портал. Вязание, беременность, витамины, макияж
Поиск по сайту

Агрегатные состояния вещества. Кристаллические и аморфные тела. Урок "Кристаллическое состояние вещества. Типы связей в кристаллах. Аморфные тела"

Подавляющее большинство твердых тел в природе имеет кристаллическое строение. Так, например, почти все минералы и все металлы в твердом состоянии являются кристаллами.

Характерная черта кристаллического состояния, отличающая его от жидкого и газообразного состояний, заключается в наличии анизотропии , т. е. зависимости ряда физических свойств (механических, тепловых, электрических, оптических) от направления.

Тела, свойства которых одинаковы по всем направлениям, называются изотропными . Изотропны, кроме газов и, за отдельными исключениями, всех жидкостей, также аморфные твердые тела. Последние представляют собой переохлажденные жидкости.

Причиной анизотропии кристаллов служит упорядоченное расположение частиц (атомов или молекул), из которых они построены. Упорядоченное расположение частиц проявляется в правильной внешней огранке кристаллов. Кристаллы ограничены плоскими гранями, пересекающимися под некоторыми, определенными для каждого данного рода кристаллов, углами. Раскалывание кристаллов легче происходит по определенным плоскостям, называемым плоскостями спайности.

Правильность геометрической формы и анизотропия кристаллов обычно не проявляются по той причине, что кристаллические тела встречаются, как правило, в виде поликристаллов , т. е. конгломератов множества сросшихся между собой, беспорядочно ориентированных мелких кристалликов. В поликристаллах анизотропия наблюдается только в пределах, каждого отдельно взятого кристаллика, тело же в целом вследствие беспорядочной ориентации кристалликов анизотропии не обнаруживает. Создав специальные условия кристаллизации из расплава или раствора, можно получить большие одиночные кристаллы - монокристаллы любого вещества. Монокристаллы некоторых минералов встречаются в природе в естественном состоянии.

Упорядоченность расположения атомов кристалла заключается в том, что атомы (или молекулы) размещаются в узлах геометрически правильной пространственной решетки. Весь кристалл может быть получен путем многократного повторения в трех различных направлениях одного и того же структурного элемента, называемого элементарной кристаллической ячейкой (рис. 110.1, а). Длины ребер a , b и с кристаллической ячейки называются периодами идентичности кристалла.

Кристаллическая ячейка представляет собой параллелепипед, построенный на трех векторах а , b , с , модули которых равны периодам идентичности. Этот параллелепипед, кроме ребер а, b , с, характеризуется также углами α,β и γ между ребрами (рис. 110.1, б).Величины а, b , с и α, β, γ однозначно определяют элементарную ячейку и называются ее параметрами.

Элементарную ячейку можно выбрать различными способами. Это показано на рис. 110.2 на примере плоской структуры. Облицовку стены чередующимися светлыми и темными треугольными плитками можно получить многократным повторением в двух направлениях различных ячеек (см., например, ячейки 1 , 2 и 3; стрелками указаны направления, в которых повторяются ячейки). Ячейки1 и 2 отличаются тем, что включают минимальное количество структурных элементов (по одной светлой и по одной темной плитке). Кристаллическая ячейка, включающая наименьшее число атомов, характеризующих химический состав кристаллического вещества (например, один атом кислорода и два атома водорода для кристалла льда), называется примитивной ячейкой . Однако обычно вместо примитивной выбирают элементарную ячейку с большим числом атомов, но обладающую той же симметрией, как и весь кристалл в целом. Так, изображенная на рис. 110.2 плоская структура совпадает сама с собой при повороте на 120° вокруг любой перпендикулярной к ней оси, проходящей через вершины плиток. Таким же свойством обладает элементарная ячейка 3. Ячейки 1 и 2 имеют меньшую степень симметрии: они совпадают сами с собой только при повороте на 360°.

). В кристаллическом состоянии существует и ближний порядок, к-рый характеризуется постоянными координац. числами, и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическом состоянии приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. . ). Вследствие своей макс. упорядоченности кристаллическое состояние в-ва характеризуется миним. внутр. энергией и является термодинамически равновесным состоянием при данных параметрах -давлении, т-ре, составе (в случае ) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не м. б. осуществлено, приближение к нему имеет место при стремлении т-ры к О К (т. наз. идеальный ). Реальные тела в кристаллическом состоянии всегда содержат нек-рое кол-во , нарушающих как ближний, так и дальний порядок. Особенно много наблюдается в твердых р-рах, в к-рых отдельные частицы и их группировки статистически занимают разл. положения в пространстве. Вследствие трехмерной периодичности атомного строения основными признаками являются однородность и св-в и , к-рая выражается, в частности, в том, что при определенных условиях образования приобретают форму многогранников (см. ). Нек-рые св-ва в-ва на пов-сти и вблизи от нее существенно отличны от этих св-в внутри , в частности из-за нарушения . Состав и, соотв., св-ва меняются по объему из-за неизбежного изменения состава среды по мере роста . Т. обр., однородность св-в так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическоего состояния. Большинство тел в кристаллическом состоянии является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в к-рых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концснтрирование примесей в процессе . Из-за случайной ориентации зерен поликристаллич. тело в целом (объем, содержащий достаточно много зерен) м. б. изотропным, напр. полученное при кристаллич. с послед. . Однако обычно в процессе и особенно пластич. возникает текстура - преимуществ, ориентация кристаллич. зерен в определенном направлении, приводящая к св-в. На однокомпонентной системы вследствие кристаллическое состояние может отвечать неск. полей, расположенных в области сравнительно низких т-р и повыш. . Если имеется лишь одно состояния и в-во химически не разлагается при повышении т-ры, то состояния граничит с полями и по линиям и - соотв., причем и () могут находиться в метастабильном (переохлажденном) состоянии в состояния, тогда как кристаллическое состояние не может находиться в поле или , т. е. кристаллич. в-во нельзя перегреть выше т-ры или . Нек-рые в-ва (мезогены) при нагреве переходят в жидкокристаллич. состояние (см. ). Если на диаграмме однокомпонентной системы имеются два и более состояния, эти поля граничат по линии полиморфных превращений. Кристаллич. в-во можно перегреть или переохладить ниже т-ры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние в-ва может находиться в поле др. кристаллич. модификации и является метастабильным. В то время как и благодаря существованию критич. точки на линии можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращ. кристаллического состояния и окончательно не решен. Для нек-рых в-в можно оценить критич. параметры -давление и т-ру, при к-рых D H пл и D V пл равны нулю, т. е. кристаллическое состояние и термодинамически неразличимы. Но реально такое превращ. не наблюдалось ни для одного в-ва (см. ). В-во из кристаллического состояния можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму своб. энергии, не только изменением ( , т-ры, состава), но и воздействием или тонким . Критич. размер частиц, при к-ром уже не имеет смысла говорить о кристаллическом состоянии, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки. К ристаллическое состояние отличают обычно от др. разновидностей твердого состояния (стеклообразного, аморфного) по рентгенограммам в-ва.
===
Исп. литература для статьи «КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ» : Шаскольская М. П., Кристаллография, М., 1976; Современная кристаллография, под ред. Б. К. Вайнштeйна. т. I. М., 1979. П. И. Федоров.

Страница «КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ» подготовлена по материалам .

В газообразном состоянии молекулы вещества находятся на достаточно большом расстоянии друг от друга и занимают небольшой объём вещества. В газообразном состоянии молекулы или атомы, составляющие газ, практически не взаимодействуют между собой. Структура газообразных веществ не упорядочена.

При конденсации газообразных веществ образуются жидкие вещества. В жидком состоянии расстояние между молекулами значительно меньше, и основную часть объёма вещества занимают молекулы, соприкасаясь друг с другом и притягиваясь друг к другу. Т.е. в жидком состоянии наблюдается некоторая упорядоченность частиц, соблюдается ближний порядок.

В твердом состоянии частицы настолько сближены друг с другом, что между ними возникают прочные связи, практически отсутствует движение частиц относительно друг друга. Существует высокая упорядоченность структуры. Твердые вещества могут находиться в аморфном и кристаллическом состоянии.

Аморфные вещества не имеют упорядоченной структуры, подобно жидкостям у них наблюдается только близкий порядок (стеклообразное состояние). Аморфные вещества обладают текучестью. Полимеры, смолы, аморфный кремний, аморфный селœен, мелкодисперсное серебро, аморфный оксид кремния, германия, некоторые сульфаты, карбонаты находятся в аморфном состоянии. Аморфные вещества изотропны, ᴛ.ᴇ. физические свойства вещества распространяются одинаково в разные стороны, и они не имеют строго определœенной точки плавления, они плавятся в каком-то интервале температур.
Размещено на реф.рф
Но подавляющее число твердых тел - кристаллические вещества.

Кристаллические вещества характеризуются дальним порядком, ᴛ.ᴇ. трехмерной периодичностью структуры по всœему объёму. Регулярное расположение частиц изображается в виде кристаллических решеток, в узлах которых расположены частицы, образующие твердое вещество. Соединяются они воображаемыми линиями.

Идеальные монокристаллы обладают:

Анизотропностью – ᴛ.ᴇ. в различных направлениях по объёму кристалла физические свойства различны.

Определœенной температурой плавления.

Кристаллические вещества характеризуются энергией кристаллической решетки, это та энергия, которую нужно затратить на то, чтобы разрушить кристаллическую решетку и удалить частицы за пределы взаимодействия.

Постоянная кристаллической решетки характеризует расстояние между частицами в кристаллической решетке, а также узлы между гранями кристаллической решетки.

Координационное число кристаллической решетки - ϶ᴛᴏ число частиц, непосредственно примыкающих к данной частице.

Наименьшей структурной единицей является элементарная ячейка. Имеется семь типов кристаллических решеток: кубическая, тетраэдрическая, гексагональная, ромбоэдрическая, орторомбоэдрическая, моноклинная и триклинная.

Οʜᴎ отличаются между собой углами между осями (a, b, g) и постоянными кристаллической решетки (a,b,c).

Существуют различные вещества, которые кристаллизуются в одинаковых кристаллических решетках – изоморфные вещества.

Пример: KAl(SO 4) 2 × 12H 2 O и KCr(SO 4) 2 × 12H 2 O

По типу частиц в узлах кристаллической решетки кристаллы бывают: молекулярные, атомно – ковалентные, ионные, металлические и смешанные.

1). Молекулярные кристаллы: в узлах находятся молекулы, между которыми существуют вандерваальсовы взаимодействия или водородная связь. Веществ с молекулярной решеткой очень мало. К ним принадлежат неметаллы, за исключением углерода и кремния, всœе органические соединœения с неионной связью и многие неорганические вещества. К примеру, структура льда:

3). Ионные кристаллы: в узлах находятся ионы, которые удерживаются друг около друга за счёт электростатического взаимодействия. К соединœениям с ионной связью относится большинство солей и небольшое число оксидов. Ионные соединœения имеют сравнительно высокие температуры плавления. По причине того, что ионная связь ненасыщенна и ненаправленна, ионная решетка характеризуется высокими координационными числами (6,8).

4). Существуют металлические кристаллы. Металлические решетки образуют простые вещества большинства элементов периодической системы – металлы. По прочности металлические решетки находятся между атомными и молекулярными кристаллическими решетками.

5). В природе часто встречаются смешанные кристаллы, в которых взаимодействие осуществляется как ковалентными, так и вандерваальсовыми взаимодействиями, к примеру, графит:

В слоях ковалентная связь (sp 2 -гибридтзация атома углергда), между слоями – вандерваальсово взаимодействие.

Некоторые вещества могут кристаллизоваться в различные кристаллические решетки. Это явление принято называть полиморфизм (примером являются: углерод, алмаз и графит) или аллотропия .

Кристаллическое состояние вещества. - понятие и виды. Классификация и особенности категории "Кристаллическое состояние вещества." 2017, 2018.

Особенностями внутреннего строения кристаллов, отли­чающими их от некристаллических (аморфных) тел, являются упоря­доченное, периодически повторяющееся расположение материальных частиц (атомов, тонов, молекул) в пространстве и симметричность этого расположения. При этом указанная упорядоченность проявляется на расстояниях, значительно превышающих размеры самих частиц, и сохраняется в пределах всего кристалла, т.е. имеет место дальний порядок (в противоположность ближнему порядку - упорядоченности в расположении частиц в ближайших к данному атому областях, соизмеримых с размером атомов).

Второй особенностью кристаллов является их анизотроп­ность, т.е. неодинаковость свойств по различным направлениям в кристалле. Анизотропия, или векториальность свойств кристаллов по различным направлениям, является следствием их геометрической анизотропии, т.е. различия материальных частиц и связей в различ­ных направлениях в структуре кристалла.

Третьей особенностью свойств кристаллов является их однородность, проявляющаяся в том, что любые два участка кристалла обладают совершенно одинаковы­ми свойствами (по параллельным направлениям).

Кристалл - есть твердое однородное анизотроп­ное тело, ограниченное плоскими гранями, возникающими на нем в силу свойств самого тела, причем кристаллы одного и того же веще­ства могут иметь разную величину, форму и количество граней, но углы между соответствующими гранями всегда остаются постоян­ными.

Кристаллические вещества могут существовать в виде монокрис­таллов или поликристаллических веществ. Монокристаллами назы­ваются одиночные кристаллы, встречающиеся в природе или выра­щиваемые искусственно для нужд науки и техники. Однако гораздо большее распространение имеют поликристаллические вещества, со­стоящие из множества мелких сросшихся монокристаллов, в обыч­ных условиях по разному ориентированных по отношению друг к другу, сцепление между которыми осуществляется за счет межатом­ных и межмолекулярных сил. При такой беспорядочной ориентации характерная для монокристаллов анизотропия свойств будет, есте­ственно, отсутствовать и в целом они будут изотропными, т.е. будут иметь по различным направлениям одинаковые свойства.

Для описания периодичности в расположении материальных частиц кристаллических фаз вводится понятие «кристаллическая решетка». Кристаллическая решетка - математическая абстракция, характеризующая схему трехмерной периодичности в бесконечной системе точек (узлов решетки) в пространстве. Всю решетку можно представить себе как бесконечную систему элементарных параллелепипедов, целиком заполняющих пространство за счет бесконечного повторения в трех независимых направлениях одного элементарного параллелепипеда, который но­сит название элементарной ячейки. Величина ребер элементарного па­раллелепипеда и углы между ними называются параметрами решетки и являются материальными константами каждого кристаллического вещества. Элементарная ячейка представляет собой наименьшую часть кристалла, которая отражает все особенности его внутреннего строения.


В зависимости от вида частиц и преимущественного типа хими­ческой связи в кристалле решетки разделяются на две большие груп­пы: молекулярные и координационные.

В молекулярных решетках вузлах находятся молекулы. Для таких решеток характерна сильная внутримолекулярная связь и слабая остаточная (ван-дер-ваальсовая) связь между молекулами. К соеди­нениям с такими решетками относится большинство органических веществ. Для них характерны легкоплав­кость, высокая летучесть, низкая твердость.

В кристаллах с коор­динационными решетками нельзя выделить отдельные дискретные молекулы, а силы связи между данным атомом или ионом и всеми его соседям и в координационной сфере примерно одинаковы (в этом случае весь кристалл можно рассматривать как одну гигантскую мо­лекулу). Координационные решетки характерны для большинства неорганических веществ, в том числе силикатов и других тугоплавких соединений.

Координационные решетки, в спою очередь, можно разделить на ионные, атомные (ковалентные) и металлические. В узлах ионных решеток попеременно располагаются положительные и отрицатель­ные ионы. В узлах атомных (ковалентных) решеток располагаются нейтральные атомы, связанные преимущественно ковалентной связью. К веществам с подобными решетками относятся, например, алмаз, кремний, некоторые карбиды, силициды и т.д. В узлах металлических решеток, характерных для металлов, располагаются ионы металла, погружен­ные в «электронный газ». Такое строение решетки обусловливает вы­сокие электропроводность, теплопроводность и пластичность.

Важной характеристикой кристаллических структур является координационное число атомов или ионов. Координационным числом называется число частиц, непосредственно окружающих данный ион или атом. Так, в ионе 4- координационное чис­ло атома кремния по кислороду равно 4.

КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ

Основные понятия

Кристаллическое состояние веществ - одно из самых распро­страненных в окружающей нас природе. Кристаллическими явля­ются очень многие синтетические материалы, используемые в совре­менной технике: полупроводники, ферромагнетики, сверхпрочные и жаростойкие сплавы. В связи с этим изучение кристаллического состояния является делом первостепенной научной важности.

Каковы основные признаки кристаллического состояния? Твер­дое вещество существует в двух формах: оно может быть кристал­лическим или аморфным. Одно из характерных свойств кристалли­ческого вещества, в отличие от аморфного, - это способность само­ограняться. Кристаллы образуются по-разному: они выпадают в осадок при упаривании раствора, возникают при охлаждении расплава, при достаточно низкой температуре, они растут из паров (иней или морозные узоры на стекле). И во всех этих случаях на поверхности кристаллов самопроизвольно возникают плоские грани.

Вместе с тем, огранка - хотя и характерный, но не обязатель­ный признак кристаллического вещества. В некоторых случаях гра­ни кристаллов бывают выражены весьма нечетко. Иногда вещество состоит из таких мелких кристалликов, что грани трудно обнару­жить даже под микроскопом. Кроме того, если кристалл обточить, придав ему округлую форму, лишенную граней, вещество не пере­станет быть кристаллическим и свойства его останутся прежними.

Способность самоограняться - это лишь одно из проявлений более общего, наиболее важного качества кристаллов - их анизо­тропии (различие свойств по разным направлениям).

Если из кристалла поваренной соли, имеющего форму куба, выточить шар, а затем погрузить его в насыщенный раствор соли и медленно упаривать раствор, то кристалл начнет расти и посте­пенно снова примет форму куба. Этот опыт показывает, что ско­рость роста кристалла в разных направлениях неодинакова. Грани кристалла возникают перпендикулярно направлениям, по которым скорость роста минимальна.

Анизотропия проявляется в очень многих физических свойствах кристаллов. В отличие от кристаллических, аморфные вещества, имеющие совершенно одинаковые свойства по всем направлениям, называют изотропными. В этом отношении они подобны жидкостям и газам.

Еще одна характерная особенность кристаллов - фиксирован­ная температура плавления. При нагревании кристаллическое ве­щество до определенной температуры остается твердым, а затем начинает плавиться, переходя в жидкое состояние. Пока продолжается плавление, температура не повышается. Аморфные вещест­ва ведут себя иначе. При нагревании куска стекла он начинает постепенно размягчаться и, наконец, растекается, принимая форму сосуда. Невозможно установить, при какой температуре это про­изошло. Вязкость стекла уменьшается постепенно, никакой оста­новки в росте температуры нет.

Но самая важная особенность кристаллического вещества за­ключается в упорядоченном расположении его атомов.

На рисунке 2 показано внутреннее строение кристалла (а) и аморфного вещества (б) того же состава.

Рис 2. Внутренне строение кристаллического вещества

Рисунок имеет условный характер, так как в действительности атомы вещества располагаются не на плоскости, а в пространстве. Рассмотрим атомы, обозна­ченные черными точками. В обоих случаях окружение каждого из таких атомов почти одинаково: ближайшие соседи располагаются по вершинам треугольника, совершенно правильного при кристал­лическом и почти правильного при аморфном состоянии. Значит, и в аморфном веществе имеется так называемый «ближний порядок». Но если принять во внимание не только самых близких соседей, то выяснится, что в кристалле окружение каждого атома остается одинаковым, а в аморфном веществе оно окажется разным. Поэто­му говорят, что в кристаллическом теле, в отличие от аморфного, наблюдается «дальний» порядок. Следствием этого являются все особые свойства кристаллов. Естественно, что в направлении АВ, параллельном направлению некоторых связей между атомами, свойства будут не такими, как в направлении CD, вдоль которого такие связи не проходят. В аморфном веществе подобных специфи­ческих направлений мы не найдем. Так объясняется анизотропия кристаллов, в частности различная скорость роста в различных на­правлениях, а следовательно, и способность самоограняться.

В приведенном примере мы рассматривали вещество, которое может существовать и в аморфном и в кристаллическом состоянии. Это действительно так. При быстром охлаждении расплавленного сахара получается аморфная масса (леденец), при медленном охлаждении в образующемся твердом сахаре можно заметить по­блескивающие кристаллики.

Нетрудно понять, почему так происходит. Представим себе роту солдат, которым приказано строиться. Если им дать для этого хотя бы немного времени, они успеют занять свои места, выровнять ряды. Если же после команды «строиться» будет сразу подана коман­да «стой», то расположение солдат так и останется беспорядочным, хотя, может быть, и наметится какая-то тенденция к порядку. Не­что подобное происходит и при затвердевании: если процесс идет медленно, частицы успевают занять отведенные им места, быстрое затвердевание не дает им такой возможности.